Ветреная ветряная энергетика. Ветряные электростанции

Уже прочитали: 5 097

Энергетическая отрасль справляется со своей задачей достаточно уверенно, но масштабы нашей страны таковы, что полное обеспечение электроэнергией всех отдаленных или труднодоступных районов пока невозможно. Это связано с множеством факторов, преодолеть которые в нынешних условиях слишком дорого или технически недостижимо.

Поэтому все более пристальное внимание приходится обращать на альтернативные источники, способные удовлетворять потребности отсталых регионов без участия магистральных сетей. Перспективным направлением является ветроэнергетика, использующая дармовой .

Устройство и виды ветровых электростанций

Ветроэлектростанции (ВЭС) используют энергию ветра для выработки электротока. Крупные станции состоят из множества , объединенных в единую сеть и питающих большие массивы - поселки, города, регионы. Более мелкие способны обеспечивать небольшие жилые массивы или отдельные дома. Станции классифицируются по различным признакам, например, по функциональности:

  • мобильные,
  • стационарные.

По расположению:

  • прибрежные
  • офшорные
  • наземные
  • плавающие.

По типу конструкции:

  • роторные,
  • крыльчатные.

Наибольшее распространение в мире получили крыльчатные станции. Они имеют большую эффективность и способны производить достаточно большое количество электроэнергии, чтобы обеспечивать ею потребителей в масштабах целой энергетической отрасли. При этом, распространение таких станций имеет специфическую конфигурацию и встречается не повсеместно.

Принцип работы

Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с . Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.

Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.

Все виды действуют по одному принципу - поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.

Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции - ВЭС.

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики - никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. .

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Экономическое обоснование строительства ВЭС

С точки зрения экономики, строительство ВЭС имеет смысл только при отсутствии других способов энергообеспечения. Оборудование стоит очень дорого, обслуживание и ремонт требуют постоянных расходов, а срок службы ограничен 20 годами, и это в условиях Европы. Для России этот срок можно снизить не менее, чем на треть. Поэтому использование ВЭС экономически малоэффективно.

ЧИТАЙТЕ ТАКЖЕ: Надежный тихоходный ветряк: что представляет собой и как использовать энергию слабых ветров?

С другой стороны, при полном отсутствии альтернативных вариантов или при наличии оптимальных условий, обеспечивающих качественную и равномерную работу ветряков, использование ВЭС становится вполне приемлемым способом энергообеспечения.

Важно! Речь идет именно о крупных станциях, снабжающих целые регионы. Ситуация с бытовыми или частными станциями выглядит более привлекательно.

Мощности промышленных станций

Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт , и это еще не предел.

Следует сразу же оговориться, что речь идет о лидерах в ветроэнергетике , другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.

Мелкие станции имеют более скромные показатели и могут рассматриваться только как точечные источники, питающие ограниченное число потребителей.

Ведущие мировые производители

В число наиболее известных производителей ветрогенераторов и оборудования для ветроэнергетической отрасли входят компании:

  • Vestas,
  • Nordex,
  • Superwind,
  • Panasonic,
  • Ecotecnia,
  • Vergnet.

Российские производители пока не готовы конкурировать с этими фирмами, так как вопрос о создании качественных и производительных ветрогенераторов в России до сих пор не ставился достаточно плотно.

География применения

Наибольшее распространение ветроэнергетика получила на западном побережье Атлантики, в частности, в Германии. Там имеются наилучшие условия - ровные и сильные ветра, оптимальные климатические показатели. Но основной причиной широкого распространения ВЭС именно в этом регионе стало отсутствие возможностей для строительства гидроэлектростанций, вынудившее правительства стран этого региона использовать доступные методы получения электроэнергии. При этом, имеются установки и в балтийском регионе, в Дании, Голландии.

Россия пока отстает в этом вопросе, за прошедшее десятилетие в эксплуатацию сдан едва ли десяток ВЭС. Причина такого отставания кроется в большом развитии гидроэнергетики и отсутствии должных условий для эксплуатации промышленных ветроэнергетических станций. Тем не менее, отмечается рост производства небольших установок, способных обеспечивать энергией отдельные усадьбы.

Факты и заблуждения

Малое распространение ветроэнергетических установок и отсутствие опыта общения с ними породили массу заблуждений относительно свойств и воздействия ВЭС на организм человека. Так, широко распространено мнение о необычайно высоком уровне шума, производимого работающим ветрогенератором. Действительно, определенный шум имеется, но его уровень гораздо ниже, чем принято считать. Так, шум от промышленных моделей на расстоянии 200-300 м воспринимается на слух так же, как звук от работающего бытового холодильника.

Другая проблема, которую необоснованно раздувают несведущие люди - создание непреодолимых помех радио и телевизионным сигналам. Этот вопрос был решен раньше, чем о нем узнали пользователи - каждый мощный промышленный ветряк снабжен качественным фильтром радиопомех, способным полностью исключить влияние устройства на эфир.

Люди, живущие поблизости от турбин, будут постоянно находиться в зоне мерцания тени. Это термин, обозначающий некомфортное ощущение от мигающих световых проявлений. Вращающиеся лопасти создают такой эффект, но его значение сильно преувеличено. Даже самые чувствительные люди всегда могут попросту отвернуться от турбины, если случилось оказаться поблизости от нее.

По подсчетам суммарная мощность энергии ветра в 100 раз превышает мощность всех рек на планете. То есть, ресурсы ветра практически неисчерпаемы. В некоторых странах, например, в Шотландии и Дании, вся электроэнергия, используемая в быту — освещение, стиральные машины, домашние компьютеры и т.д. произведена с помощью энергии ветра.

Ветроэнергетика — одна из отраслей энергетики, относящаяся к возобновляемым (альтернативным) источниками энергии. Для преобразования энергии ветра в электрическую используются ветрогенераторы. В общих чертах, они представляют из себя конструкцию из опорной башни (высота которой может превышать 100 м) и трехлопастного винта, который под воздействием силы ветра вращает электрогенератор.

Ветрогенераторы в Дании

Историческая справка

Энергия ветра и ее использование известна с незапамятных времен. Ветер был основным движителем в мировом судоходстве. А первые ветряные мельницы появились в Вавилоне, упоминания о них датируются 1750-м годом до нашей эры. В Европе они появились намного позже — примерно в X-XI веках нашей эры. Большей частью их использовали для помола зерновых. В Нидерландах — для откачки воды с осушаемых земель. В Скандинавии мощности ветряков использовали на лесопилках. Отличие европейских мельниц от азиатских довольно существенное — у европейских горизонтальная ось вращения, у азиатских — вертикальная.

В Европе мельницы строились, что естественно, в регионах с высокой ветровой нагрузкой. В Ла Манче (Испания) до сих пор сохранились десятки старых мельниц. К концу XIX века счет ветряных мельниц в Европе шел на десятки тысяч. Только в Германии их число приближалось к 19 тысячам. Строительство ветряков остановилось, а потом начало сокращаться после появления паровых машин. Но еще в 30-40-х годах XX века, в сельской местности ветряки использовались довольно активно. К ветряной энергии вернулись в 1970-х годах, когда из-за ближневосточных конфликтов начались перебои с поставками нефти. Первой тогда спохватилась Дания, с ее постоянными северными ветрами. Именно датчане начали первые эксперименты — производство электроэнергии из ветра.

Осознав все преимущества использования энергии ветра, В 1979 году датская компания Vestas представила первую ветроустановку современного типа. Примерно треть ветряков, которые работают в странах Европы, произведены Vestas.

Второй, более мощный, толчок дал Чернобыль. Именно эта катастрофа стимулировала массовое увлечение ветроэнергетикой, как альтернативным источником энергии. В начале 1990-х Европа и США занялись производством энергии из ветра в промышленных масштабах и ветрогенераторы стали устанавливать массово. Чуть позже эти направлением заинтересовалась и КНР. По состоянию на 1997 год ветрогенераторы по всему миру вырабатывали 7475 мВт электроэнергии в год. Развитие отрасли продолжается: к 2013 году мировые объемы вырабатываемой ветром электричества увеличились в 45 раз и продолжают расти.

Преимущества ветряных электростанций

Как у любого начинания у ветроэнергетики есть плюсы и минусы. Плюсы энергии ветра лежат на поверхности — она неиссякаема и абсолютно экологична. У нее нет отходов. По предварительным исследованиям, массовое использование ВЭУ может ослабить силу ураганов. И не только — ветроустановки влияют на климат — он становится более континентальным. Но главное, наверное то, что 1 МВт мощности ветряка сокращает выбросы углекислого газа на 1800 тонн в год.

Наиболее перспективными для развития ветроэнергетики, из-за стабильности ветров, считаются прибрежные зоны. Экономически выгодным считается строить ветроэлектростанции в море, в 10-12 км. от побережья, не смотря на то, что строительство такой станции в 1,5-2 раза дороже, чем на суше. Такие электростанции называются «оффшорными».

На фото: самоподъемная платформа в процессе установки ветрогенератора

Ветрогенераторы бывают не только промышленные или коммерческие, но и бытовые. Никому из частных лиц не запрещено установить свой персональный ветряк, обеспечивая жилье электрическим светом. Ветряки используются и как водяные насосы, например, для подачи воды из глубоких колодцев. Ветроэнергетические установки просты в использовании и не требуют подготовки, тем более специального образования — это несомненный плюс современных «ветряков». Ветер может быть сильным, может быть слабым, но в регионах со стабильной ветровой нагрузкой он есть всегда. Тогда как тепловые, например, электростанции полностью зависят от поставок топлива — газа, угля или мазута. Бытовые ветроустановки компактны, легки и мобильны. Даже установка мощнейшей промышленной ветроустановки с вбиванием свай, монтажом и заливкой фундамента, а затем установкой самого оборудования занимает не больше 10-ти дней. Постройка тепловой электростанции занимает годы и требует намного больше сил, труда и профессионального обслуживания. Ветряная электростанция, поясним термин, состоит из нескольких ветряных электроустановок, объеденных в одну промышленную сеть. Число таких «ветряков» может достигать нескольких десятков.

Конечно есть и минусы:

  1. Главные недостатки ветряных электростанций — стоимость электроэнергии, выработанной с помощью силы ветра, за небольшим исключением, дороже электричества, произведенного сгоранием ископаемого топлива.
  2. Зависимость от силы ветра. Чем выше его сила, тем дешевле произведенная электроэнергия.
  3. Вращаясь, турбины ВЭУ создают теле и радиопомехи.
  4. Ощутимая вибрация. По этой причине, мощные промышленные ВЭУ нельзя устанавливать ближе чем на 300 метров от жилых домов.
  5. Вращение лопастей создает область пониженного давления, что вызывает повышенную гибель летучих мышей

Ветроэнергетика в мире

В мире давно уже поняли все плюсы ветроэнергетики и агитировать за ее развитие особенно не надо. Дания, пионер в области экологической энергетики, сегодня благодаря энергии ветра получает до 42% нужного стране электричества. В Евросоюзе за счет ветроэнергетики производится до 7,5-8% всей потребляемой электроэнергии. Это колоссальные объемы, учитывая масштабы экономики стран ЕС. Не отстает и Китай, принявший специальную программу по развитию и использованию альтернативной энергетики. Специальные программы, с налоговыми льготами действуют и в США. Сегодня 22% всех ветроэлектростанций планеты располагаются в странах Северной Америки, в основном в Канаде и США. Ветряки, установленные в Никарагуа, обеспечивают стране более 20% всей потребляемой электроэнергии. 31% мировых ветрогенераторов приходится на Азию, в основном на Китай.

А вот Европа разместила в своих странах 44% всех ветроустановок мира. Оно и понятно — в экономически развитой Европе очень плохо с ископаемыми энергоресурсами. В Европе производятся крупнейшие ветроустановки мира. Тон задает Германия и Дания с ее колоссальным опытом в разработке ветрогенераторов. Сейчас наметилась тенденция по увеличению мощности ВЭУ. Общеевропейский проект UpWind направлен на создание офшорной ветроустановки мощностью в 20 МВт. Германская Enercon выпускает модель E-126 (126 — размах лопастей в метрах) мощностью 7,58 МВт. Вместе с лопастями высота установки достигает почти 200 метров. Еще крупнее и мощнее ветроустановка V-164 (опять, 164 — размах лопастей в метрах) датской компании Vestas — 8МВт. Но она предназначена в основном для оффшорных зон.

Не каждый человек сможет быстро ответить на вопрос – что же такое ветер? С точки зрения физики это довольно сложное природное явление. Но есть у этого понятия и экономическое толкование, и важность его в современном мире все возрастает от года к году. Энергия ветра, дешевая и возобновляемая, вот причина привлекательности этого явления природы. Точно такая же энергия получается при использовании течения воды, приливов и отливов, солнечных лучей. Но у ветряной энергии есть свои особенности, которые мы и рассмотрим в этой статье.

История использования энергии ветра

В древнем городе Вавилон в третьем тысячелетии до нашей эры уже пользовались энергией ветра. Расцвет экономики этого региона наступил в 6-ом веке до нашей эры, и именно на эту эпоху приходится самое большое число технических открытий. Тогда было создано первое устройство, которое позволяло осушать болотистые местности. В древнем Египте с помощью ветра были созданы первые ветряные мельницы для производства муки из зерна. В Китае пошли еще дальше, там в это же время велась откачка воды с рисовых полей механизированным способом. И вращали лопасти этих устройств именно ветряные потоки. Европа в этом отношении не была в первых рядах, ветряные технологии дошли сюда только в 12-ом веке нашей эры.

Но все эти три тысячи лет были только подготовкой к существенному рывку технического прогресса, который произошел в 20-ом веке. Человечество придумало, каким образом не просто заставлять ветер вращать какие-либо лопасти, а как вырабатывать электроэнергию, чтобы обеспечивать работу самых разных машин. Такое открытие стало по-настоящему прогрессивным, оно перевернуло всю историю использования ветра. На данный момент на Земле работают электростанции, которые являются представителями далеко не первого поколения. Современные, технологичные, экономичные станции украшают многочисленные районы нашей планеты, способствуя улучшению экологии и здоровья людей.

Преимущества ветряных электростанций

Установить ветряную электростанцию где угодно не получится. Для этой цели подходят только те районы, где наблюдаются постоянные сильные ветра. Но и здесь есть свои нормативы. Если в местности преимущественно дует ветер со скоростью от 4,5 м/с, то строительство ветряной станции будет эффективным. Причем, такую электростанцию можно строить как отдельно стоящую, так и несколько станций, объединенных в систему, то есть каскад станций. Такие сети станций называют ветряными фермами, в этом случае несколько ветряков работают на один энергоблок. Таким образом достигается максимальный энергетический эффект при существенной экономии на строительстве и оснащении.

На данный момент наибольшее количество ветряной энергии производят в Соединенных Штатах. Если же говорить о Европе, то лидерами в этой сфере являются Дания, Нидерланды, Германия и Великобритания. Причем, в Германии работает наиболее мощная электростанция, которая в электроэнергию преобразует силу ветра. Она вырабатывает ежегодно до 7 миллионов кВт/часов энергии. Ветряная ферма Aeolus II поставляет электроэнергию в 2 тысячи домов. Если учесть, что на планете на сегодняшний день работает более 20 тысяч ветряных ферм, то можно представить, сколько электричества производится с помощью обычного природного явления – ветра. Такое широкое развитие отрасль получила благодаря массе преимуществ. Есть и недостатки, но они легко устраняются, а вот плюсы работают долго и эффективно. Итак, ветряные электростанции ценятся человечеством по нескольким причинам.

Стоимость эксплуатации ветроэлектростанции очень низкая. Для ее успешной работы не нужен многочисленный персонал, не требуется его обучение. Покупка и регулярная замена дорогостоящих блоков также не требуется.

Однажды правильно выбранное место расположения для электростанции гарантирует несколько десятилетий бесперебойной и качественной работы, получение должного объема энергии. Точность выбора места требует огромного внимания: подробный и тщательный анализ обеспечит в дальнейшем и экологичность процесса и его финансовую выгоду для собственника.

Электростанция, работающая при помощи ветра, это практически совершенно чистый объект в плане экологии. Чистота окружающей среды выражается и в системе работы, и в процессе передачи энергии, и в ее использовании. Кроме того, ветряная станция не может навредить окружающей среде даже в случае ее разрушения, что нельзя сказать о гидроэлектростанции или о станции атомной. Ветряная электростанция не производит выбросов в окружающую среду, она не изменяет ландшафт, не нарушает природную экосистему. Никаких вредных воздействий ни на территорию, ни на озоновую оболочку Земли нет.

Топливо или источник энергии у ветряной станции – возобновляемое. Это ветер, который не нужно где-либо добывать и транспортировать на место расположения станции. Поэтому финансовый эффект от работы ветряков максимальный. Транспортировать электрическую энергию приходится только до источника потребления. Практика показывает, что потребитель практически всегда находится рядом, поэтому не приходится тратить большие деньги на строительство коммуникаций. Кроме того, не происходит потерь энергии во время транспортировки, а они иногда приносят очень серьезные убытки компании-собственнику.

Вблизи от ветряной электростанции не надо выстраивать «мертвую» зону, как около других станций. Все земли можно использовать в сельскохозяйственных целях, ведь ветряки никак не вредят окружающей среде.

Расходы на получение ветряной энергии хоть и минимальны, но все же существуют. Преимущество этих расходов – их стабильность. А вот стоимость энергии для продажи постоянно растет. Следовательно, размер чистой прибыли владельцев ветряных станций постоянно растет. Причем конкурентоспособность на рынке энергии ветряной ресурс имеет очень высокую. Стоимость энергии в разы дешевле, чем та, которая получена на ГЭС, АЭС.

Недостатки ветряных электростанций

Недостатков немного, но противники строительства ветряков их активно муссируют в прессе. Но все эти недостатки скорее всего представляют собой трудности при ведении этого бизнеса, которые можно минимизировать.

Высокий входной барьер в бизнес. Для того, чтобы начать получать ветровую энергию, надо построить ветряную ферму. Предстоят затраты на высокоточные расчеты для определения местности постройки, также надо будет вложить деньги в покупку оборудования и его монтаж на выбранной территории. Именно стоимость ветряной электростанции, стоимость оборудования являются основной строкой затрат, но здесь можно воспользоваться услугами инвесторов, банковским кредитованием и пр.

Весьма существенный недостаток ветряной станции – невозможность точного прогноза, сколько электроэнергии будет получено в определенный отрезок времени. Предугадать, насколько сильным будет ветер, и будет ли он дуть вообще, невозможно. Поэтому при ведении данного вида бизнеса существуют существенные риски. Но минимизировать их можно, если тщательно выверить координаты расположения станции на стадии ее планирования. Такой анализ основывается на многолетних показаниях скорости ветра.

Многие противники ветряных станций утверждают, что лопасти издают сильный шум, который негативно влияет на окружающую среду. Но современные технологии позволили измерить уровень шума и изучить его воздействие. Оказалось, громкий звук от работы лопастей действительно присутствует, но уже на расстоянии 30 метров от источника он слышен только на уровне фона. Для сведения: фон – это уровень шума естественной окружающей среды.

Защитники птиц выступают активно против строительства ветряных станций. В этом случае аргументы также легко разбиваются об анализ вреда, наносимого другими техногенными объектами птицам. Подсчет показал, что количество птиц, попадающих под лопасти ветряков, ничем не отличается от числа пернатых, которые погибают в других местах, к примеру, на высоковольтных линиях передач.

Еще одна весьма сомнительная гипотеза противников ветряной энергии – искажение телевизионного сигнала вблизи от фермы. В современном мире все большую популярность приобретает спутниковое ТВ, цифровое ТВ, эфирного телевидения остается все меньше и меньше, поэтому приему сигнала в квартирах и домах ничто помешать не может.

Ветряные электростанции делают жизнь немцев невыносимой:

Достижения ветряного направления в энергетике

Ветроэнергетика в мире получила в последние годы значительное развитие. Показательны результаты ветряной энергетики в Шотландии. Здесь ветряками вырабатывается электроэнергии на 25% больше, чем потребляют все жилые объекты страны, а это более трети всего энергопотребления. И самое интересное, что правительство Шотландии поставило задачу – к 2020 году все потребности в электричестве удовлетворять за счет работы ветряных электростанций. И шотландцы готовы на это потратить почти 46 миллиардов фунтов стерлингов. Взята стратегия на закрытие атомных станций и на развитие солнечных и ветряных электростанций.

Недавно в Канаде установили юбилейную ветряную станцию. Порядковый номер этого объекта – 1500! Полмиллиона жилых домов можно снабжать электроэнергией ветряных станций. Причем первая ветряная турбина в этой стране была установлена всего 10 лет назад. И если на данный момент доля ветряной энергетики занимает 3% в экономике Канады, то к 2025 году планируется увеличить этот объем до 20%.

Испанский остров Эль Хьерро давно заявил о своей энергетической независимости. Ветро-приливная электростанция вырабатывает более 20% всего электричества. Столько же дает атомная энергетика, чуть меньше – ТЭЦ и ГЭС. Солнечные батареи вырабатывают около 5% электричества, потребляемого на острове.

На Ямайке построена гибридная станция, которая одновременно работает и на энергии ветра и на солнечной энергии. Ее мощность – более 110 кВт/ч в год. Владелец электростанции – производитель оборудования для таких станций. Собственник утверждает, что окупается довольно дорогое оборудование за 4 года, а затем за 25 лет эксплуатации станция даст экономию 2 миллиона долларов.

Российская ветроэнергетика

Все перечисленные плюсы ветроэнергетики, которые присутствуют в других странах, в России работают слабо. Стоимость киловатта электроэнергии ветровой в 3-8 раз превышает цену обычного традиционного электричества. Причин тому много, но главная – слабое внимание к этому альтернативному источнику энергии. Следствием такого отношения является то, что за год в России производится ветряными фермами столько электричества, сколько в Китае, например, за 2 часа. Ветроэнергетика в России – очень обширная тема, и ее мы обсудим в следующей статье.

Почему в России не строят ветряные электростанции:

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс . «Машины: применение природных сил и науки»).

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых .

Современные методы генерации электроэнергии из энергии ветра

Мощности ветрогенераторов и их размеры
Параметр 1 МВт 2 МВт 2,3 МВт
Высота мачты 50 м - 60 м 80 м 80 м
Длина лопасти 26 м 37 м 40 м
Диаметр ротора 54 м 76 м 82,4 м
Вес ротора на оси 25 т 52 т 52 т
Полный вес машинного отделения 40 т 82 т 82,5 т
Источник: Параметры действующих ветрогенераторов. Пори, Финляндия

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 - 2 раза. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции . Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года . Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.

Статистика по использованию энергии ветра

На июнь 2012 года суммарные установленные мощности всех ветрогенераторов мира составили 254 ГВт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ . Предполагаемая мощность ветряной энергетики к концу 2012 года по данным World Wind Energy Assosiation приблизится к значению в 273 ГВт .

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии - 31 %, в Северной Америке - 22 %.

Таблица: Суммарные установленные мощности, МВт, по странам мира 2005-2011 г. Данные Европейской ассоциации ветроэнергетики и GWEC .

Страна 2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. 2011 г. Мвт.
Китай 1260 2405 6050 12210 25104 41800 62733
США 9149 11603 16818 25170 35159 40200 46919
Германия 18428 20622 22247 23903 25777 27214 29060
Испания 10028 11615 15145 16754 19149 20676 21674
Индия 4430 6270 7580 9645 10833 13064 16084
Франция 757 1567 2454 3404 4492 5660 6800
Италия 1718 2123 2726 3736 4850 5797 6737
Великобритания 1353 1962 2389 3241 4051 5203 6540
Канада 683 1451 1846 2369 3319 4008 5265
Португалия 1022 1716 2150 2862 3535 3702 4083
Дания 3122 3136 3125 3180 3482 3752 3871
Швеция 510 571 788 1021 1560 2163 2907
Япония 1040 1394 1538 1880 2056 2304 2501
Нидерланды 1224 1558 1746 2225 2229 2237 2328
Австралия 579 817 817,3 1306 1668 2020 2224
Турция 20,1 50 146 433 801 1329 1799
Ирландия 496 746 805 1002 1260 1748 1631
Греция 573 746 871 985 1087 1208 1629
Польша 73 153 276 472 725 1107 1616
Бразилия 29 237 247,1 341 606 932 1509
Австрия 819 965 982 995 995 1011 1084
Бельгия 167,4 194 287 384 563 911 1078
Болгария 14 36 70 120 177 375 612
Норвегия 270 325 333 428 431 441 520
Венгрия 17,5 61 65 127 201 329 329
Чехия 29,5 54 116 150 192 215 217
Финляндия 82 86 110 140 146 197 197
Эстония 33 32 58 78 142 149 184
Литва 7 48 50 54 91 154 179
Украина 77,3 86 89 90 94 87 151
Россия 14 15,5 16,5 16,5 14 15,4

Таблица: Суммарные установленные мощности, МВт по данным WWEA .

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227

В то же время, по данным European Wind Energy Association, суммарная вырабатываемая мощность ветряной энергии в России за 2010 год составила 9 МВт, что приблизительно соответствует показателям Вьетнама (31 МВт), Уругвая (30,5 МВт), Ямайки (29,7 МВт), Гваделупы (20,5 МВт), Колумбии (20 МВт), Гайаны (13,5 МВт) и Кубы (11,7 МВт).

В 2011 году 28 % электроэнергии в Дании вырабатывалось из энергии ветра .

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.

Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии . 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны .

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч /год. Экономический потенциал составляет примерно 260 млрд кВт·ч /год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период - период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % - в Северном экономическом районе, около 16 % - в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Cамая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области . Зеленоградская ВЭУ состоит из 21 установки датской компании SЕАS Energi Service A.S.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область , Ейской ВЭС 72 МВт Краснодарский край , Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия , Приморской ВЭС 30 МВт Приморский край , Магаданской ВЭС 30 МВт Магаданская область , Чуйской ВЭС 24 МВт Республика Алтай , Усть-Камчатской ВДЭС 16 МВт Камчатская область , Новиковской ВДЭС 10 МВт Республика Коми , Дагестанской ВЭС 6 МВт Дагестан , Анапской ВЭС 5 МВт Краснодарский край , Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия .

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС , действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива .

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка ».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году - 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч. .

Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт. .

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт - офшорных .

Экономические аспекты ветроэнергетики

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (cтоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти .

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами , зависит от скорости ветра .

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США , 4,5 - 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35-40 % к концу г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО 2 на 1,5 миллиарда тонн .

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее .

Вентиляция городов

В современных городах выделяется большое количество вредных веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна .

Шум

Ветряные энергетические установки производят две разновидности шума:

  • механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы . На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью , что и происходит в таких густонаселённых странах, как Дания , Нидерланды , Германия . Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам

Таблица: Вред, наносимый животным и птицам. Данные AWEA .

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков .

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала . Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы .

См. также

Источники

  1. Global Wind Installations Boom, Up 31 % in 2009
  2. World Wind Energy Report 2010 (PDF). Архивировано
  3. Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate . Worldwatch.org. Архивировано из первоисточника 26 августа 2011.
  4. Renewables . eirgrid.com. Архивировано из первоисточника 26 августа 2011.
  5. «Wind Energy Update » (PDF). Wind Engineering : 191–200.
  6. Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications . eirgrid.com (February 2004). Архивировано из первоисточника 26 августа 2011. Проверено 22 ноября 2010.
  7. "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано из первоисточника 26 августа 2011.
  8. Claverton-Energy.com (28 августа 2009). Архивировано из первоисточника 26 августа 2011. Проверено 29 августа 2010.
  9. Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7 ,
  10. http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
  11. http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
  12. http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
  13. Clipper Windpower Announces Groundbreaking for Offshore Wind Blade Factory
  14. Edward Milford BTM Wind Market Report 20 Июль 2010 г.
  15. Jorn Madslien . Floating wind turbine launched , BBC NEWS , London: BBC , стр. 5 June 2009. Проверено 23 декабря 2012.
  16. Annual installed global capacity 1996-2011
  17. Half-year report 2012
  18. US and China in race to the top of global wind industry
  19. http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
  20. «Wind in power. 2011 European statistics »
  21. «Global Wind Statistics 2011 »
  22. Die Energiewende in Deutschland
  23. The Danish Market
  24. БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
  25. Wind power - clean and reliable
  26. Испания получила рекордную долю электричества от ветра
  27. Использование энергии ветра в СССР \\ Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. стр. 7
  28. Энергетический портал. Вопросы производства, сохранения и переработки энергии
  29. http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
  30. =1&cHash=EU will exceed renewable energy goal of 20 percent by 2020] (англ.) . Проверено 21 января 2011.
  31. Denmark aims to get 50% of all electricity from wind power
  32. EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
  33. Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy» , Energy Policy, Vol. 35, Isue 7, July 2007
  34. China’s Galloping Wind Market (англ.) . Проверено 21 января 2011.
  35. India to add 6,000 MW wind power by 2012 (англ.) . Архивировано из первоисточника 26 августа 2011. Проверено 21 января 2011.
  36. Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
  37. John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
  38. American Wind Energy Association. The Economics of Wind Energy
  39. Wind Energy and Wildlife: The Three C’s
  40. Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
  41. D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America . - 2004. - В. 46.
  42. Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal . - 2009. - В. 1.
  43. http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
  44. Wind Energy in Cold Climates
  45. Wind energy Frequently Asked Questions
  46. Энергия ветра: мифы против фактов
  47. MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
  48. Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс . «Машины: применение природных сил и науки»).

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых .

Современные методы генерации электроэнергии из энергии ветра

Мощности ветрогенераторов и их размеры
Параметр 1 МВт 2 МВт 2,3 МВт
Высота мачты 50 м - 60 м 80 м 80 м
Длина лопасти 26 м 37 м 40 м
Диаметр ротора 54 м 76 м 82,4 м
Вес ротора на оси 25 т 52 т 52 т
Полный вес машинного отделения 40 т 82 т 82,5 т
Источник: Параметры действующих ветрогенераторов. Пори, Финляндия

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 - 2 раза. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции . Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года . Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.

Статистика по использованию энергии ветра

На июнь 2012 года суммарные установленные мощности всех ветрогенераторов мира составили 254 ГВт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ . Предполагаемая мощность ветряной энергетики к концу 2012 года по данным World Wind Energy Assosiation приблизится к значению в 273 ГВт .

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии - 31 %, в Северной Америке - 22 %.

Таблица: Суммарные установленные мощности, МВт, по странам мира 2005-2011 г. Данные Европейской ассоциации ветроэнергетики и GWEC .

Страна 2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. 2011 г. Мвт.
Китай 1260 2405 6050 12210 25104 41800 62733
США 9149 11603 16818 25170 35159 40200 46919
Германия 18428 20622 22247 23903 25777 27214 29060
Испания 10028 11615 15145 16754 19149 20676 21674
Индия 4430 6270 7580 9645 10833 13064 16084
Франция 757 1567 2454 3404 4492 5660 6800
Италия 1718 2123 2726 3736 4850 5797 6737
Великобритания 1353 1962 2389 3241 4051 5203 6540
Канада 683 1451 1846 2369 3319 4008 5265
Португалия 1022 1716 2150 2862 3535 3702 4083
Дания 3122 3136 3125 3180 3482 3752 3871
Швеция 510 571 788 1021 1560 2163 2907
Япония 1040 1394 1538 1880 2056 2304 2501
Нидерланды 1224 1558 1746 2225 2229 2237 2328
Австралия 579 817 817,3 1306 1668 2020 2224
Турция 20,1 50 146 433 801 1329 1799
Ирландия 496 746 805 1002 1260 1748 1631
Греция 573 746 871 985 1087 1208 1629
Польша 73 153 276 472 725 1107 1616
Бразилия 29 237 247,1 341 606 932 1509
Австрия 819 965 982 995 995 1011 1084
Бельгия 167,4 194 287 384 563 911 1078
Болгария 14 36 70 120 177 375 612
Норвегия 270 325 333 428 431 441 520
Венгрия 17,5 61 65 127 201 329 329
Чехия 29,5 54 116 150 192 215 217
Финляндия 82 86 110 140 146 197 197
Эстония 33 32 58 78 142 149 184
Литва 7 48 50 54 91 154 179
Украина 77,3 86 89 90 94 87 151
Россия 14 15,5 16,5 16,5 14 15,4

Таблица: Суммарные установленные мощности, МВт по данным WWEA .

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227

В то же время, по данным European Wind Energy Association, суммарная вырабатываемая мощность ветряной энергии в России за 2010 год составила 9 МВт, что приблизительно соответствует показателям Вьетнама (31 МВт), Уругвая (30,5 МВт), Ямайки (29,7 МВт), Гваделупы (20,5 МВт), Колумбии (20 МВт), Гайаны (13,5 МВт) и Кубы (11,7 МВт).

В 2011 году 28 % электроэнергии в Дании вырабатывалось из энергии ветра .

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.

Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии . 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны .

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч /год. Экономический потенциал составляет примерно 260 млрд кВт·ч /год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период - период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % - в Северном экономическом районе, около 16 % - в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Cамая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области . Зеленоградская ВЭУ состоит из 21 установки датской компании SЕАS Energi Service A.S.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область , Ейской ВЭС 72 МВт Краснодарский край , Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия , Приморской ВЭС 30 МВт Приморский край , Магаданской ВЭС 30 МВт Магаданская область , Чуйской ВЭС 24 МВт Республика Алтай , Усть-Камчатской ВДЭС 16 МВт Камчатская область , Новиковской ВДЭС 10 МВт Республика Коми , Дагестанской ВЭС 6 МВт Дагестан , Анапской ВЭС 5 МВт Краснодарский край , Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия .

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС , действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива .

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка ».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году - 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч. .

Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт. .

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт - офшорных .

Экономические аспекты ветроэнергетики

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (cтоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти .

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами , зависит от скорости ветра .

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США , 4,5 - 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35-40 % к концу г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО 2 на 1,5 миллиарда тонн .

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее .

Вентиляция городов

В современных городах выделяется большое количество вредных веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна .

Шум

Ветряные энергетические установки производят две разновидности шума:

  • механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы . На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью , что и происходит в таких густонаселённых странах, как Дания , Нидерланды , Германия . Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам

Таблица: Вред, наносимый животным и птицам. Данные AWEA .

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков .

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала . Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы .

См. также

Источники

  1. Global Wind Installations Boom, Up 31 % in 2009
  2. World Wind Energy Report 2010 (PDF). Архивировано
  3. Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate . Worldwatch.org. Архивировано из первоисточника 26 августа 2011.
  4. Renewables . eirgrid.com. Архивировано из первоисточника 26 августа 2011.
  5. «Wind Energy Update » (PDF). Wind Engineering : 191–200.
  6. Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications . eirgrid.com (February 2004). Архивировано из первоисточника 26 августа 2011. Проверено 22 ноября 2010.
  7. "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано из первоисточника 26 августа 2011.
  8. Claverton-Energy.com (28 августа 2009). Архивировано из первоисточника 26 августа 2011. Проверено 29 августа 2010.
  9. Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7 ,
  10. http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
  11. http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
  12. http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
  13. Clipper Windpower Announces Groundbreaking for Offshore Wind Blade Factory
  14. Edward Milford BTM Wind Market Report 20 Июль 2010 г.
  15. Jorn Madslien . Floating wind turbine launched , BBC NEWS , London: BBC , стр. 5 June 2009. Проверено 23 декабря 2012.
  16. Annual installed global capacity 1996-2011
  17. Half-year report 2012
  18. US and China in race to the top of global wind industry
  19. http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
  20. «Wind in power. 2011 European statistics »
  21. «Global Wind Statistics 2011 »
  22. Die Energiewende in Deutschland
  23. The Danish Market
  24. БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
  25. Wind power - clean and reliable
  26. Испания получила рекордную долю электричества от ветра
  27. Использование энергии ветра в СССР \\ Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. стр. 7
  28. Энергетический портал. Вопросы производства, сохранения и переработки энергии
  29. http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
  30. =1&cHash=EU will exceed renewable energy goal of 20 percent by 2020] (англ.) . Проверено 21 января 2011.
  31. Denmark aims to get 50% of all electricity from wind power
  32. EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
  33. Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy» , Energy Policy, Vol. 35, Isue 7, July 2007
  34. China’s Galloping Wind Market (англ.) . Проверено 21 января 2011.
  35. India to add 6,000 MW wind power by 2012 (англ.) . Архивировано из первоисточника 26 августа 2011. Проверено 21 января 2011.
  36. Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
  37. John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
  38. American Wind Energy Association. The Economics of Wind Energy
  39. Wind Energy and Wildlife: The Three C’s
  40. Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
  41. D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America . - 2004. - В. 46.
  42. Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal . - 2009. - В. 1.
  43. http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
  44. Wind Energy in Cold Climates
  45. Wind energy Frequently Asked Questions
  46. Энергия ветра: мифы против фактов
  47. MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
  48. Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

Top