Сила тяжести и сила всемирного тяготения. Закон всемирного тяготения

Гравитационные силы описываются наиболее простыми количественными закономерностями. Но несмотря на эту простоту проявления сил тяготения могут быть весьма сложны и многообразны.

Гравитационные взаимодействия описываются законом всемирного тяготения, открытым Ньютоном:

Материальные точки притягиваются с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

Гравитационная постоянная. Коэффициент пропорциональности называется гравитациоутой постоянной. Эта величина характеризует интенсивность гравитационного взаимодействия и является одной из основных физических констант. Ее числовое значение зависит от выбора системы единиц и в единицах СИ равно Из формулы видно, что гравитационная постоянная численно равна силе притяжения двух точеных масс по 1 кг, расположенных на расстоянии друг от друга. Значение гравитационной постоянной столь мало, что мы не замечаем притяжения между окружающими нас телами. Только из-за огромной массы Земли притяжение окружающих тел к Земле решающим образом влияет на все, что происходит вокруг нас.

Рис. 91. Гравитационное взаимодействие

Формула (1) дает только модуль силы взаимного притяжения точечных тел. На самом деле речь в ней идет о двух силах, поскольку сила тяготения действует на каждое из взаимодействующих тел. Эти силы равны по модулю и противоположны по направлению в соответствии с третьим законом Ньютона. Они направлены вдоль прямой, соединяющей материальные точки. Такие силы называются центральными. Векторное выражение, например для силы с которой тело массы действует на тело массы (рис. 91), имеет вид

Хотя радиусы-векторы материальных точек зависят от выбора начала координат, их разность, а значит, и сила зависят только от взаимного расположения притягивающихся тел.

Законы Кеплера. К известной легенде о падающем яблоке, которое якобы навело Ньютона на мысль о тяготении, вряд ли следует относиться серьезно. При установлении закона всемирного тяготения Ньютон исходил из открытых Иоганном Кеплером на основании астрономических наблюдений Тихо Браге законов движения планет Солнечной системы. Три закона Кеплера гласят:

1. Траектории, по которым движутся планеты, представляют собой эллипсы, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты, проведенный из Солнца, ометает за равные промежутки времени одинаковые площади.

3. Для всех планет отношение квадрата периода обращения к кубу большой полуоси эллиптической орбиты имеет одно и то же значение.

Орбиты большинства планет мало отличаются от круговых. Для простоты будем считать их точно круговыми. Это не противоречит первому закону Кеплера, так как окружность представляет собой частный случай эллипса, у которого оба фокуса совпадают. Согласно второму закону Кеплера движение планеты по круговой траектории происходит равномерно, т. е. с постоянной по модулю скоростью. При этом третий закон Кеплера говорит о том, что отношение квадрата периода обращения Т к кубу радиуса круговой орбиты одинаково для всех планет:

Движущаяся по окружности с постоянной скоростью планета обладает центростремительным ускорением, равным Воспользуемся этим, чтобы определить силу, которая сообщает планете такое ускорение при выполнении условия (3). Согласно второму закону Ньютона ускорение планеты равно отношению действующей на нее силы к массе планеты:

Отсюда, учитывая третий закон Кеплера (3), легко установить, как сила зависит от массы планеты и от радиуса ее круговой орбиты. Умножая обе части (4) на видим, что в левой части согласно (3) стоит одинаковая для всех планет величина. Значит, и правая часть, равная одинакова для всех планет. Поэтому т. е. сила тяготения обратно пропорциональна квадрату расстояния от Солнца и прямо пропорциональна массе планеты. Но Солнце и планета выступают в их гравитационном

взаимодействии как равноправные партнеры. Они отличаются друг от друга только массами. И поскольку сила притяжения пропорциональна массе планеты то она должна быть пропорциональна и массе Солнца М:

Вводя в эту формулу коэффициент пропорциональности G, который уже не должен зависеть ни от масс взаимодействующих тел, ни от расстояния между ними, приходим к закону всемирного тяготения (1).

Гравитационное поле. Гравитационное взаимодействие тел можно описывать, используя понятие гравитационного поля. Ньютоновская формулировка закона всемирного тяготения соответствует представлению о непосредственном действии тел друг на друга на расстоянии, так называемом дальнодействии, без какого-либо участия промежуточной среды. В современной физике считается, что передача любых взаимодействий между телами осуществляется посредством создаваемых этими телами полей. Одно из тел непосредственно не действует на другое, оно наделяет окружающее его пространство определенными свойствами - создает гравитационное поле, особую материальную среду, которая и воздействует на другое тело.

Представление о физическом гравитационном поле выполняет как эстетические, так и вполне практические функции. Силы тяготения действуют на расстоянии, они тянут там, где, мы едва ли можем увидеть, что именно тянет. Силовое поле представляет собой некоторую абстракцию, заменяющую нам крюки, веревочки или резинки. Никакой наглядной картины поля дать невозможно, поскольку само понятие физического поля относится к числу основных понятий, которые невозможно определить через другие, более простые понятия. Можно только описать его свойства.

Рассматривая способность гравитационного поля создавать силу, мы считаем, что поле зависит только от того тела, со стороны которого действует сила, и не зависит от того тела, на которое она действует.

Отметим, что в рамках классической механики (механики Ньютона) оба представления - о дальнодействии и взаимодействии через гравитационное поле - приводят к одинаковым результатам и в равной мере допустимы. Выбор одного из этих способов описания определяется исключительно соображениями удобства.

Напряженность поля тяготения. Силовой характеристикой гравитационного поля является его напряженность измеряемая силой, действующей на материальную точку единичной массы, т. е. отношением

Очевидно, что гравитационное поле, создаваемое точечной массой М, обладает сферической симметрией. Это значит, что вектор напряженности в любой его точке направлен к массе М, создающей поле. Модуль напряженности поля как следует из закона всемирного тяготения (1), равен

и зависит только от расстояния до источника поля. Напряженность поля точечной массы убывает с расстоянием по закону обратных квадратов. В таких полях движение тел происходит в соответствии с законами Кеплера.

Принцип суперпозиции. Опыт показывает, что гравитационные поля удовлетворяют принципу суперпозиции. Согласно этому принципу гравитационное поле, создаваемое какой-либо массой, не зависит от наличия других масс. Напряженность поля, создаваемого несколькими телами, равна векторной сумме напряженностей полей, создаваемых этими телами в отдельности.

Принцип суперпозиции позволяет рассчитывать гравитационные поля, создаваемые протяженными телами. Для этого нужно мысленно разбить тело на отдельные элементы, которые можно считать материальными точками, и найти векторную сумму напряженностей полей, создаваемых этими элементами. Пользуясь принципом суперпозиции, можно показать, что гравитационное поле, создаваемое шаром со сферически-симметричным распределением массы (в частности, и однородным шаром), вне этого шара неотличимо от гравитационного поля материальной точки такой же массы, как и шар, помещенной в центр шара. Это значит, что напряженность гравитационного поля шара дается той же формулой (6). Этот простой результат приводится здесь без доказательства. Оно будет дано для случая электростатического взаимодействия при рассмотрении поля заряженного шара, где сила также убывает обратно пропорционально квадрату расстояния.

Притяжение сферических тел. Используя этот результат и привлекая третий закон Ньютона, можно показать, что два шара со сферически-симметричным распределением масс у каждого притягиваются друг к другу так, как если бы их массы были сосредоточены в их центрах, т. е. просто как точечные массы. Приведем соответствующее доказательство.

Пусть два шара массами притягивают друг друга с силами (рис. 92а). Если заменить первый шар точечной массой (рис. 92б), то создаваемое им гравитационное поле в месте расположения второго шара не изменится и, следовательно, не изменится сила действующая на второй шар. На основании третьего

закона Ньютона отсюда можно сделать вывод, что второй шар действует с одной и той же силой как на первый шар, так и на заменяющую его материальную точку Эту силу легко найти, учитывая, что создаваемое вторым шаром гравитационное поле в том месте, где находится первый шар, неотличимо от поля точечной массы помещенной в его центр (рис. 92в).

Рис. 92. Сферические тела притягиваются друг к другу так, как если бы их массы были сосредоточены в их центрах

Таким образом, сила притяжения шаров совпадает с силой притяжения двух точечных масс ту и расстояние между которыми равно расстоянию между центрами шаров.

Из этого примера наглядно видна практическая ценность концепции гравитационного поля. В самом деле, было бы очень неудобно описывать силу, действующую на один из шаров, как векторную сумму сил, действующих на отдельные его элементы, учитывая при этом, что каждая из этих сил, в свою очередь, представляет собой векторную сумму сил взаимодействия этого элемента со всеми элементами, на которые мы должны мысленно разбить и второй шар. Обратим внимание еще и на то, что в процессе приведенного доказательства мы поочередно рассматривали в качестве источника гравитационного поля то один шар, то другой, в зависимости от того, интересовала ли нас сила, действующая на тот или на другой шар.

Теперь очевидно, что на любое находящееся вблизи поверхности Земли тело массы линейные размеры которого малы по сравнению с радиусом Земли, действует сила тяжести которая в соответствии с (5) может быть записана как Значение модуля напряженности гравитационного поля Земли дается выражением (6), в котором под М следует понимать массу земного шара, а вместо следует подставить радиус Земли

Для применимости формулы (7) необязательно Землю считать однородным шаром, достаточно, чтобы распределение масс было сферически-симметричным.

Свободное падение. Если тело вблизи поверхности Земли движется только под действием силы тяжести т. е. свободно падает, то его ускорение согласно второму закону Ньютона равно Видно, что оно направлено к центру Земли и в соответствии с (7) по модулю равно

Но правая часть (8) дает значение напряженности гравитационного поля Земли вблизи ее поверхности. Итак, напряженность гравитационного поля и ускорение свободного падения в этом поле - это одно и то же. Именно поэтому мы сразу обозначили эти величины одной буквой

Взвешивание Земли. Остановимся теперь на вопросе об экспериментальном определении значения гравитационной постоянной Прежде всего отметим, что его нельзя найти из астрономических наблюдений. Действительно, из наблюдений за движением планет можно найти только произведение гравитационной постоянной на массу Солнца. Из наблюдений за движением Луны, искусственных спутников Земли или за свободным падением тел вблизи земной поверхности можно найти только произведение гравитационной постоянной на массу Земли. Для определения необходимо иметь возможность независимо измерить массу источника гравитационного поля. Это можно сделать только в опыте, производимом в лабораторных условиях.

Рис. 93. Схема опыта Кавендиша

Такой опыт был впервые выполнен Генри Кавендишем в с помощью крутильных весов, к концам коромысла которых были прикреплены небольшие свинцовые шары (рис. 93). Вблизи от них закреплялись большие тяжелые шары. Под действием сил притяжения малых шаров к большим коромысло крутильных весов немного поворачивалось, и по закручиванию упругой нити подвеса измерялась сила. Для интерпретации этого опыта важно знать, что шары взаимодействуют так же, как и соответствующие материальные точки такой же массы, ибо здесь в отличие от планет размеры шаров Нельзя считать малыми по сравнению с расстоянием между ними.

В своих опытах Кавендиш получил значение гравитационной постоянной всего на отличающееся от принятого в настоящее время. В современных модификациях опыта Кавендиша производится измерение ускорений, сообщаемых малым шарам на коромысле гравитационным полем тяжелых шаров, что позволяет повысить точность измерений. Знание гравитационной постоянной позволяет определить массы Земли, Солнца и других источников тяготения по наблюдениям за движением тел в создаваемых ими гравитационных полях. В этом смысле опыт Кавендиша иногда образно называют взвешиванием Земли.

Всемирное тяготение описывается очень простым законом, который, как мы видели, легко устанавливается на основе законов Кеплера. В чем же величие открытия Ньютона? В нем нашла воплощение идея о том, что падение яблока на Землю и движение Луны вокруг Земли, которое тоже в известном смысле представляет собой падение на Землю, имеют общую причину. В те далекие времена это была удивительная мысль, поскольку общая мудрость гласила, что небесные тела движутся по своим «совершенным» законам, а земные объекты подчиняются «мирским» правилам. Ньютон пришел к мысли о том, что единые законы природы справедливы для всей Вселенной.

Введите такую единицу силы, чтобы в законе всемирного тяготения (1) значение гравитационной постоянной С равнялось единице. Сравните эту единицу силы с ньютоном.

Существуют ли отклонения от законов Кеплера для планет Солнечной системы? Чем они обусловлены?

Как из законов Кеплера установить зависимость силы тяготения от расстояния?

Почему гравитационную постоянную нельзя определить на основе астрономических наблюдений?

Что такое гравитационное поле? Какие преимущества дает описание гравитационного взаимодействия с помощью понятия поля по сравнению с представлением о дальнодействии?

В чем заключается принцип суперпозиции для гравитационного поля? Что можно сказать о гравитационном поле однородного шара?

Как связаны между собой напряженность гравитационного поля и ускорение свободного падения?

Рассчитайте массу Земли М, используя значения гравитационной постоянной радиуса Земли км и ускорения свободного падения

Геометрия и тяготение. С простой формулой закона всемирного тяготения (1) связано несколько тонких моментов, заслуживающих отдельного обсуждения. Из законов Кеплера следует,

что расстояние в знаменатель выражения для силы тяготения входит во второй степени. Вся совокупность астрономических наблюдений приводит к выводу, что значение показателя степени равно двум с очень высокой точностью, а именно Этот факт в высшей степени замечателен: точное равенство показателя степени двум отражает евклидову природу трехмерного физического пространства. Это значит, что положение тел и расстояние между ними в пространстве, сложение перемещений тел и т. д. описывается геометрией Евклида. Точное равенство двум показателя степени подчеркивает то обстоятельство, что в трехмерном евклидовом мире поверхность сферы точно пропорциональна квадрату ее радиуса.

Инертная и гравитационная массы. Из приведенного вывода закона тяготения следует также, что сила гравитационного взаимодействия тел пропорциональна их массам, а точнее - инертным массам, фигурирующим во втором законе Ньютона и описывающим инертные свойства тел. Но инертность и способность к гравитационным взаимодействиям представляют собой совершенно разные свойства материи.

В определении массы на основе инертных свойств используется закон . Измерения массы в соответствии с этим ее определением требуют проведения динамического эксперимента - прикладывается известная сила и измеряется ускорение. Именно так с помощью масс-спектрометров определяются массы заряженных элементарных частиц и ионов (а тем самым и атомов).

В определении массы на основе явления тяготения используется закон Измерение массы в соответствии с таким определением производится с помощью статического эксперимента - взвешиванием. Тела располагают неподвижно в гравитационном поле (обычно это поле Земли) и сравнивают действующие на них силы тяготения. Определенная таким образом масса называется тяжелой или гравитационной.

Будут ли значения инертной и гравитационной масс одинаковыми? Ведь количественные меры этих свойств в принципе могли бы быть различными. Впервые ответ на этот вопрос был дан Галилеем, хотя он, по-видимому, и не подозревал об этом. В своих опытах он намеревался доказать, что неверны господствовавшие тогда утверждения Аристотеля о том, что тяжелые тела падают быстрее легких.

Чтобы лучше проследить за рассуждениями, обозначим инертную массу через а гравитационную - через На поверхности Земли сила тяжести тогда запишется как

где - напряженность гравитационного поля Земли, одинаковая для всех тел. Теперь сравним, что произойдет, если два тела одновременно сбросить с одной высоты. В соответствии со вторым законом Ньютона для каждого из тел можно написать

Но опыт показывает, что ускорения обоих тел одинаковы. Следовательно, одним и тем же будет для них и отношение Итак, для всех тел

Гравитационные массы тел пропорциональны их инертным массам. Надлежащим выбором единиц их можно сделать просто равными.

Совпадение значений инертной и гравитационной масс подтверждалось много раз со все возрастающей точностью в разнообразных опытах ученых разных эпох - Ньютона, Бесселя, Этвеша, Дикке и, наконец, Брагинского и Панова, которые довели относительную погрешность измерений до . Чтобы лучше представить себе чувствительность приборов в таких опытах, отметим, что это эквивалентно возможности обнаружить изменение массы теплохода водоизмещением в тысячу тонн при добавлении к нему одного миллиграмма.

В ньютоновской механике совпадение значений инертной и гравитационной масс не имеет под собой физической причины и в этом смысле является случайным. Это просто экспериментальный факт, установленный с очень высокой точностью. Если бы это было не так, ньютоновская механика ничуть не пострадала бы. В созданной Эйнштейном релятивистской теории тяготения, называемой также общей теорией относительности, равенство инертной и гравитационной масс имеет принципиальное значение и изначально заложено в основу теории. Эйнштейн предположил, что в этом совпадении нет ничего удивительного или случайного, ибо в действительности инертная и гравитационная массы представляют собой одну и ту же физическую величину.

Почему значение показателя степени, в которой расстояние между телами входит в закон всемирного тяготения, связано с евклидовостью трехмерного физического пространства?

Как определяются инертная и гравитационная массы в механике Ньютона? Почему в некоторых книгах даже не упоминается об этих величинах, а фигурирует просто масса тела?

Предположим, что в некотором мире гравитационная масса тел никак не связана с их инертной массой. Что можно было бы наблюдать при одновременном свободном падении разных тел?

Какие явления и опыты свидетельствуют о пропорциональности инертной и гравитационной масс?

Гравитационные силы. Закон всемирного тяготения. Сила тяжести.

Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным , а само явление всемирного тяготениягравитацией.

Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем .

Гравитационные силы (силы тяготения) обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующие точки.

Выражение для силы тяготения в 1666 году получил Ньютон, когда ему было всего 24 года.

Закон всемирного тяготения : два тела притягиваются друг к другу с силами прямопропорциональными произведению масс тел и обратно пропорциональными квадрату расстояния между ними:

Закон справедлив при условии, что размеры тел пренебрежимо малы по сравнению с расстояниями между ними. Также формула может применяться для расчета сил всемирного тяготения, для тел шаровой формы, для двух тел, одно из которых является шаром, другое материальной точкой.

Коэффициент пропорциональности G = 6,68·10 -11 носит название гравитационной постоянной .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются два тела массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга.

Сила тяжести

Сила, с которой Земля притягивает находящиеся вблизи тела, называется силой тяжести , а гравитационное поле Земли – полем тяжести .

Направлена сила тяжести вниз, к центру Земли. В теле же она проходит через точку, которая называется центром тяжести . Центр тяжести однородного тела, имеющего центр симметрии (шар, прямоугольная или круглая пластина, цилиндр и т.д.), находится в этом центре. При этом он может и не совпадать ни с одной из точек данного тела (например, у кольца).

В общем случае, когда требуется найти центр тяжести какого-либо тела неправильной формы, следует исходить из следующей закономерности: если тело подвешивать на нити, прикрепляемой последовательно к разным точкам тела, то отмеченные нитью направления пересекутся в одной точке, которая как раз и является центром тяжести этого тела.

Модуль силы тяжести находиться с помощью закона всемирного тяготения и определяется по формуле:

F т = mg, (2.7)

где g – ускорение свободного падения тела (g=9,8 м/с 2 ≈10м/с 2).

Так как направление ускорения свободного падения g совпадает с направлением силы тяжести F т то можно последнее равенство переписать в виде

Из (2.7) следует, что т. е. отношение силы, действующей на тело массой m в какой-либо точке поля, к массе тела определяет ускорение свободного падения в данной точке поля.

Для точек находящихся на высоте h от поверхности Земли ускорение свободного падения тела равно:

(2.8)

где R З - радиус Земли; М З - масса Земли; h - расстояние от центра тяжести тела до поверхности Земли.

Из этой формулы вытекает, что,

во-первых , ускорение свободного падения не зависит от массы и размеров тела и,

во-вторых , с увеличением высоты над Землёй ускорение свободного падения уменьшается. Например, на высоте 297 км оно оказывается равным не 9,8 м/с 2 , а 9 м/с 2 .

Уменьшение ускорения свободного падения означает, что и сила тяжести по мере увеличения высоты над Землёй также уменьшается. Чем дальше тело находится от Земли, тем слабее она его притягивает.

Из формулы (1.73) видно, что g зависит от радиуса Земли R з.

Но из-за сплюснутости Земли в разных местах имеет разное значение: оно убывает по мере продвижения от экватора к полюсу. На экваторе, например, оно равно 9,780м/с 2 , а на полюсе - 9,832м/с 2 . Кроме того, местные значения g могут отличаться от их средних значений g ср из-за неоднородного строения земной коры и недр, горных массивов и впадин, а также залежей полезных ископаемых. Разность значений g и g ср называют

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету .

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в раз больше первой:

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.


Top