Описание плоскости белого листа бумаги. Механическая прочность и деформационные свойства бумаги

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Мусин Айдар Рустамович
  • Руководитель: Вагапова Наиля Романовна

Введение

В данное время нормальный быт человека невозможен без использования салфеток, так как без их участия невозможно организовать на достойном уровне ни одно застолье, юбилей или какое-либо другое торжественное мероприятие. Принято думать, что чем выше качество салфеток, тем выше социальный статус человека, использующего их для проведения каких-либо мероприятий. Они различаются по цвету и размеру, бывают гладкие и рельефные, однослойные и многослойные, имеют разную поверхностную плотность. Покупая салфетки в магазине, постоянно задаемся вопросом: «Хорошего ли они качества?»

Цель работы: изучить физические характеристики и свойства бумажных салфеток и выявить из них наиболее качественные.

Объект исследования : бумажные салфетки разных торговых марок и видов.

Предмет исследования : физические характеристики (толщина, плотность основы, внутренняя структура) и свойства (прочность, впитывающая способность, капиллярность) салфеток.

Задачи исследования:

  1. Составить классификацию салфеток.
  2. Изучить физические характеристики (толщина, плотность основы, внутренняя структура) и свойства салфеток (механическая прочность, впитывающая способность, капиллярность).

Методы исследования:

  1. Изучение материалов по данной теме.
  2. Проведение наблюдений и экспериментов.

§ 1. Основные характеристики салфеток

Производство бумажных салфеток появилось в Японии в 19-м веке. Как и всё новое, эта продукция была достаточно дорогой, к тому же бумага того времени сама по себе была не дешёвой. Популярными бумажные салфетки стали в 70-х годах прошлого века благодаря немцам. Именно в практичной Германии решили поставить производство на поток, чтобы сделать бумажные салфетки доступными. Жажда комфорта и чистоты превзошла эстетику, что позволило появиться бумажным салфеткам в каждом доме, причём за небольшие деньги .

Рассмотрим основные характеристики бумажных салфеток.

Геометрические: пористость, гладкость, масса 1м2 (плотность основы), однородность структуры.

Механические : прочность на разрыв.

Сорбционные: впитывающая способность.

Пористость непосредственно влияет на впитывающую способность бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры, ‒ это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, ‒ мельчайшие пространства неопределённой формы, образующиеся между волокнами целлюлозы у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги, такие как салфетки – макропористые. Такие бумаги хорошо впитывают жидкости благодаря своей рыхлой структуре, то есть сильноразвитой внутренней поверхности .

Гладкость бумаги , то есть её микрорельеф, определяет способность бумаги передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между её поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Таким образом, чтобы получить на салфетке качественный рисунок, её поверхность должна быть гладкой .

Плотность основы показывает, какую массу имеет 1 м 2 данной салфетки. Единица плотности основы ‒ г/м 2 . По принятой классификации масса 1 м 2 бумажных салфеток может быть меньше 24 г (салфетки низкой плотности) и больше 24 г (салфетки высокой плотности) .

Просвет бумаги характеризует степень однородности её структуры (равномерности распределения в ней волокон). О просвете бумаги судят по наблюдению в проходящем свете. Бумага с сильно облачным просветом крайне неоднородна. Её тонкие места являются и наименее прочными. Печать на облачной бумаге оказывается низкого качества из-за неравномерности восприятия бумагой печатной краски. Интенсивнее окрашиваются толстые участки бумажного полотна и менее интенсивно ‒ тонкие .

Прочность бумаги зависит от прочности самой структуры бумаги, которая формируется в процессе бумажного производства. Это свойство характеризуется обычно разрывным усилием в ньютонах .

Впитывающая способность бумаги показывает, сколько жидкости может впитать в себя бумага:

В таблице №1 приводится классификация салфеток. Нами для тестирования было отобрано 10 образцов бумажных салфеток (рис. 1).

Таблица 1. Классификация бумажных салфеток

  1. Салфетка с перфорацией и тиснением, с рисунком «Снежинка», однослойная.
  2. С перфорацией и тиснением, белая, однослойная.
  3. С перфорацией, цветная с рисунком, однослойная.
  4. С перфорацией и тиснением, с рисунком «Снеговик», однослойная.
  5. С перфорацией, цветная с рисунком, двухслойная.
  6. С перфорацией и тиснением, белая, двухслойная.
  7. С перфорацией и тиснением, с рисунком «Цветы», однослойная.
  8. С перфорацией и тиснением, с рисунком «Цветы», трехслойная, гладкая.
  9. С перфорацией и тиснением, гладкая, с рисунком «Виноград», однослойная.

§ 2. Изучение характеристик бумажных салфеток

Внутренняя структура салфеток изучалась при помощи микроскопа (увеличение в 50 раз). Наблюдения показали, что наиболее рыхлыми являются экземпляры салфеток под номерами 1, 7, 8, 9 (рис. 2). Эти салфетки должны лучше других впитывать жидкости.


Салфетки под номерами 3, 5 и 6 имели гладкую поверхность с перфорацией по краю. Под микроскопом видно, качество цветной печати на них выше, чем на салфетках под номерами 1, 7 и 8, которые имели тиснение по всей поверхности (рис. 3). Таким образом, для салфеток с тиснением оптимален небольшой цветной рисунок на белом фоне.

Качество цветовой печати на салфетках


Толщина салфеток измерялась методом рядов. Результаты приведены в таблице 2.

Плотность основы определяласьпутём деления массы салфетки на площадь её поверхности (г/м 2). Масса определялась при помощи лабораторных весов, а размеры – линейкой. Плотность салфеток определялась делением их массы на объём (г/см 3). Наибольшую поверхностную плотность имеют салфетки под номерами 5 , 8 и 9. Результаты измерений и вычислений приведены в таблице №2.

Таблица 2. Плотность салфеток

Толщина
h , см

Стороны
a · b , см

Масса
m , г

Плотность
ρ , г/см 3

1

2

3

4

5

6

7

8

9

Масса салфетки. Для определения массы одной салфетки измеряли массу всей пачки на электронных весах, и полученный результат делили на число салфеток в пачке.

Объем. Объем одной салфетки определяли как произведение её площади на толщину.

Однородность структуры. Об однородности структуры салфеток можно судить по их просвету – наблюдению в проходящем свете. Салфетка прижималась к оконному стеклу и фотографировалась. Салфетки под номерами 2, 4, 9, имели сильно облачный просвет, т.е. были сильно неоднородны. Они же имеют и малую плотность основы.

§ 3. Изучение физических свойств бумажных салфеток

Механический разрыв

Салфетки нарезались полосками длиной 10 см и шириной 2 см. Один край салфетки прижимался пальцем к столу, а к другому зажимом прикреплялся динамометр (рис. 4). Образец растягивался, в момент разрыва фиксировались показания динамометра.


Для каждого образца проводилось 6‒7 измерений и находилось среднее арифметическое значение разрывного усилия. Результаты представлены в таблице №3.

Таблица 3. Механическая прочность салфеток

1

2

3

4

5

6

7

8

9

Выяснилось, что салфетки обладают анизотропией механических свойств. Это связано со структурой салфеток (ориентацией волокон целлюлозы и степени однородности их распределения). Опыт показал, что образцы с плотностью основы до 18 г/м 2 имеют меньшую механическую прочность. Причём механическая прочность оказалась меньше у салфеток с неоднородной структурой.

Впитывающая способность

Салфетка целиком погружалась на 1 минуту в воду и после этого, когда излишки воды стекут, взвешивалась на лабораторных весах. Разность масс мокрой и сухой салфетки делилась на массу сухой салфетки и умножалась на 100 %. Результаты измерений и вычислений приведены в таблице №4. Лучшие показатели оказались у салфеток, имеющих рыхлую структуру и малую плотность основы.

Таблица 4. Впитывающая способность

Масса

Впитывающая способность, %

m сухая , г

m мокрая , г

m , г

1

2

3

4

5

6

7

8

9


Капиллярность

Полоски салфеток длиной 20 см и шириной 2 см погружались в жидкости (Сок с мякотью, сок без мякоти, подсолнечное масло, вода) в вертикальном положении. Измерялось, на какую высоту поднимутся жидкости (см). Результаты эксперимента приведены в таблице №5. Они же имеют наибольшую плотность, макро- и микропористость.

Таблица 5. Капиллярность

Сок с мякотью h , см

Сок h , см

Масло h , см

Вода h , см

1

2

3

4

5

6

7

8

Результаты работы

1. Изучена внутренняя структура салфеток при помощи микроскопа (увеличение в 50 раз), измерена толщина салфеток микрометром с электронным цифровым отсчётным устройством, масса салфеток определяла при помощи лабораторных весов, разрывное усилие – лабораторным динамометром. Рассчитана плотность основы салфеток.

2. В ходе экспериментов выявлено, что наибольшее разрывное усилие выдерживают гладкие салфетки, имеющие наибольшую плотность основы и однородную структуру (49,6 г/м 2 , 33,3 г/м 2 , 33,1 г/м 2). Однако, они имеют плохую впитывающую способность (485%, 458% и 494%), хотя за счёт большого размера и многослойности такие салфетки могут впитывать значительное количество жидкости (17,8­‒26,2 г против 5,5–9,0 г у однослойных). Эти салфетки обладают хорошей капиллярностью. Наибольшей впитывающей способностью обладают салфетки, имеющие наименьшую плотность основы и рыхлую структуру, но у них низкая механическая прочность и при намокании они рвутся. У всех салфеток выражена анизотропия механических свойств, что связано с определённой ориентацией волокон целлюлозы. Цветные салфетки могут окрашивать жидкость.

Таблица 6. Физические свойства каждой салфетки

Плотность
ρ , г/см 3

Минимальное разрывное усилие, Н

Максимальное разрывное усилие, Н

Впитывающая способность, %

Капиллярность

1

2

3

4

5

6

7

8

Вывод

Предложенные методы изучения салфеток позволили провести всесторонний анализ их физических свойств. По результатам проведенных мною опытов, можно сказать, что салфетки, которые имеют тиснение по всей площади, впитывают хорошо только при долгом контакте с жидкостью, но не дают хороший результат, если надо вытереть быстро. Это номера 1, 2, 3, 4, 7. Если же нужно, чтобы салфетки впитала жидкость за короткое время, то подойдут салфетки под номерами 6, 5. Они быстро впитывают воду и сок с мякотью. Но лучшего результата при долгом контакте с жидкостью они не дадут. Салфетки под номерами 8,9, многослойные, плотные, имеют микропоры, что сказывается на плохой впитываемости при длительном контакте с водой, но при кратковременном контакте дают неплохой результат. Особенно хорошо впитывает воду салфетка под номером 8. Чем плотнее салфетка, больше силы понадобится, чтобы её разорвать. А значит меньше шансов, что кусочки салфеток останутся на руке. Это салфетки под номерами 9, 8, 6, 5. Слабее на разрыв салфетки под номерами 3, 2, 1, 7. Более качественными, на мой взгляд, являются те салфетки, которые:

  1. быстро впитывают;
  2. особо не размокают, когда лежат долго в жидкости;
  3. более крепкие на разрыв.

К этим требованиям подходят салфетка под номерами 9, 8, 6, 5. Покупая салфетки обращайте внимание на то, чтобы они были двухслойные, не имели тиснения по всей площади, и смотрите чтобы рисунки были не слишком едкие. Изучив теоретический материал об изготовлении салфеток, я сделал для себя следующие выводы. Для не очень качественных салфеток характерны слишком яркие, ядовитые цвета . Больше вероятность некачественной краски, которая запросто может испачкать.

Кроме обычных однослойных белых салфеток, в последнее время становятся популярными и более дорогие многослойные салфетки , на верхний слой которых наносится цветной рисунок или орнамент. Эти бумажные салфетки так же, как и обычные белые, предназначены для сервировки стола (обычно по торжественному или праздничному случаю), но у них есть и еще одно применение. Такие салфетки используются для декупажа – декорирования твердых поверхностей (мебели, разделочных досок, шкатулок, цветочных горшков и пр.). Для этой техники используется самый верхний тонкий слой салфетки с рисунком. Причем цветные салфетки, как и обычные, можно приобрести в пачках (обычно меньшей расфасовки, нежели обычные салфетки, – не по 100, а по 10, 30, 50 штук), но также они продаются поштучно в специализированных магазинах товаров для рукоделия. Больше 80 % всего отечественного производства салфеток составляют однослойные изделия, а свыше 90 % декоративных двух- и трехслойных салфеток – это продукция зарубежных компаний.


Шкатулки, оформленные техникой декупаж

Для производства салфеток бумажных используют специальную бумагу. Жидкое сырье взбивают миксером до состояния мусса с однородной структурой. Из этой смеси делают пористую рыхлую основу, которую используют для изготовления салфеток. Готовая продукция отличается по плотности и белизне. В качестве сырья для производства салфеток используется санитарно-гигиеничная бумажная основа, изготовленная из макулатуры. Тем самым сохраняются леса.

Не всегда цена соответствует качеству салфеток.


Определяющие её печатные свойства могут быть объединены в следующие группы:

Геометрические: гладкость, толщина и масса 1 м 2 , плотность и пористость;
Оптические: оптическая яркость, непрозрачность, глянец;
Механические (прочностные и деформационные): прочность поверхности к выщипыванию, разрывная длина или прочность на разрыв, прочность на излом, сопротивление раздиранию, сопротивление расслаиванию, жесткость, упругость при сжатии и т.д.
Сорбционные: влагопрочность, гидрофобность, способность впитывать растворители печатных красок.

Все эти показатели имеют тесную зависимость друг от друга. Степень их влияния на оценку печатных свойств бумаги различна для различных способов печати.

Бумагу часто классифицируют по степени отделки поверхности. Это может быть бумага без отделки - матовая, бумага машинной гладкости и глазированная (иначе каландрированная) бумага , которую дополнительно обрабатывали в суперкаландрах для придания ей высокой плотности и гладкости.

Геометрические свойства бумаги

{В практическом приложении это означает, что, если брать более пухлую бумагу меньшего граммажа, то при равной непрозрачности, в тонне бумаги будет больше листов}

Пористость непосредственно влияет на впитывающую способность бумаги , то есть на ее способность воспринимать печатную краску и вполне может служить характеристикой структуры бумаги . Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры, - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг , а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бума г. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги , например, газетная - макропористые. Общий объем пор в таких бумагах достигает 60% и более, а средний радиус пор составляет около 0,16-0,18 мкм. Такие бумаги хорошо впитывают краску, благодаря своей рыхлой структуре, то есть сильноразвитой внутренней поверхности.

Особое место в структуре печатных свойств бумаги занимают оптические свойства, то есть белизна, непрозрачность, лоск(глянец).

Оптическая яркость - это способность бумаги отражать свет рассеянно и равномерно во всех направлениях. Высокая оптическая яркость для печатных бумаг весьма желательна, так как четкость, удобочитаемость издания зависит от контрастности запечатанных и пробельных участков оттиска.

При многокрасочной печати, цветовая точность изображения, ее соответствие оригиналу возможны только при печатании на достаточно белой бумаге . Для повышения оптической яркости в дорогие высококачественные бумаги добавляют так называемые оптические отбеливатели - люминофоры, а также синие и фиолетовые красители, устраняющие желтоватый оттенок, присущий целлюлозным волокнам. Этот технологический прием называют подцветкой. Так, мелованные бумаги без оптического отбеливателя имеют оптическую яркость не менее 76%, а с оптическим отбеливателем - не менее 84%. Печатные бумаги с содержанием древесной массы должны иметь оптическую яркость не менее 72%, а вот газетная бумага может быть недостаточно белой. Её оптическая яркость составляет в среднем 65%.

Еще одним важным практическим свойством печатной бумаги является ее непрозрачность . Особенно важна непрозрачность при двухсторонней печати. Для повышения непрозрачности подбирают композицию волокнистых материлов, комбинируют степень их помола, вводят наполнители.

Следующая группа печатных свойств - это механические свойства бумаги , которые можно подразделить на прочностные и деформационные. Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфии сопровождаются сущетвенным деформированием бумаги , например: растяжению, сжатию, изгибу. От того, как ведет себя бумага при этих воздействиях, зависит нормальное (бесперебойное) течение технологических процессов печатания и последующей обработки печатной продукции. Так, при печатании высоким способом с жестких форм при больших давлениях бумага должна быть мягкой, то есть легко сжиматься, выравниваться под давлением, обеспечивая наиболее полный конакт с печатной формой.

Сорбционные свойства бумаги

Наконец, мы вплотную подошли к одному из важнейших свойств печатной бумаги - ее впитывающей способности. Правильная оценка впитывающей способности означает выполнение условий своевременного и полного закрепления краски и, как результат - получение качественного оттиска.

Впитывающая способность бумаги , в первую очередь зависит от ее структуры, так как процессы взаимодействия бумаги с печатной краской принципиально различны. Прежде чем говорить об особенностях этого взаимодействия в тех или иных случаях, необходимо еще раз вспомнить основные типы структур современных печатных бумаг . Если изобразить структуры бумаги в виде шкалы, то на одном из ее концов разместятся макропористые бумаги , состоящие целиком из древесной массы, например, газетные. Другой конец шкалы, соответственно, займут чистоцеллюлозные микропористые бумаги , например, мелованные. Немного левее расположатся чистоцеллюлозные немелованные бумаги , тоже микропористые. А все остальные займут оставшийся промежуток.

Макропористые бумаги хорошо воспринимают краску, впитывая ее как единое целое. Краски здесь маловязкие. Жидкая краска быстро заполняет крупные поры, впитываясь на достаточно большую глубину. Причем чрезмерное ее впитывание может даже вызвать «пробивание» оттиска, то есть изображение становится видным с обороной стороны листа. Повышенная макропористость бумаги нежелательна, например, при иллюстрационной печати, когда чрезмерная впитываемость приводит к потере насыщенности и глянцевитости краски. Для микропористых (каппилярных) бумаг характерен механизм так называемого «избирательного впитывания», когда под действием сил капиллярного давления в микропоры поверхностного слоя бумаги впитывается, преимущественно, маловязкий компонент краски (растворитель), а пигмент и пленкообразователь остаются на поверхности бумаги . Именно это и требуется для получения четкого изображения. Так как механизм взаимодействия бумага-краска в этих случаях различен, для мелованных и немелованных бумаг готовят различные краски.

Гладкость бумаги, то есть микрорельеф, микрогеометрия ее поверхности определяет "разрешающую способность" бумаги: ее способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги. Различные способы печати предъявляют к бумаге различные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 сек., а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 сек. Существенно улучшает гладкость поверхности нанесение любого покровного слоя - будь то поверхностная проклейка, пигментирование, легкое или простое мелование, которое, в свою очередь может быть различным: односторонним и двухсторонним, однократным и многократным и т.д.

Поверхностная проклейка - это нанесение на поверхность бумаги тонкого слоя проклеивающих веществ (масса покрытия составляет до 6 г/м 2 с целью обеспечения высокой прочности поверхности бумаги, предохраняющей ее от выщипывания отдельных волокон липкими красками, а также для уменьшения деформации бумаги при увлажнении для обеспечения точного совпадения красок в процессе многокрасочной печати. Особенно это важно для офсетной и литографской печати, когда бумага подвергается увлажнению водой в процессе печати.

Пигментирование и мелование бумаги отличаются только массой наносимого покрытия. Так считается, что масса покровного слоя в пигментированных бумагах не превышает 14 г/м 2 , а в мелованных бумагах достигает 40 г/м 2 . Меловой слой отличается высокой степенью белизны и гладкости. Высокая гладкость - одна из наиболее важных характеристик мелованных бумаг. Их гладкость достигает 1000 сек. и более, а высота рельефа не превышает 1 мкм. Показатель гладкости не только обеспечивает оптимальное взаимодействие бумаги и краски, но и улучшает оптические свойства поверхности, воспринимающей красочное изображение. Высокая гладкость мелованной бумаги позволяет вести печать с хорошей пропечаткой при малых толщинах красочного слоя.

Обратной величиной гладкости является шероховатость, которая измеряется в микрометрах. Она напрямую характеризует микрорельеф поверхности бумаги. Как правило, в технических спецификациях бумаги указывают одну из двух этих величин.

Важной геометрической характеристикой бумаги, наряду с толщиной и массой 1 м 2 , является пухлость. Она характеризует степень спрессованности бумаги и очень тесно связана с такой оптической характеристикой, как непрозрачность. То есть, чем пухлее бумага, тем она более непрозрачна при равном граммаже. Пухлость измеряется в см 3 /г. Пухлость печатных бумаг колеблется, в среднем, от 2 см 3 /г (для рыхлых, пористых) до 0,73 см 3 /г (для высокоплотных каландрированных бумаг).

Пористость непосредственно влияет на впитывающую способность бумаги, то есть на ее способность воспринимать печатную краску и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Поры - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг.

Способы измерения геометрических свойств бумаги приведены в таблице 13.

Таблица 13 - Геометрические свойства бумаги и их измерение

Свойство

Определение

Способ измерения

Гладкость

Гладкость бумаги определяет ее "разрешающую способность": способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации.

Гладкость бумаги измеряется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги.

Толщина - это расстояние по вертикали между двумя параллельными поверхностями бумаги при заданном давлении на поверхность.

Определяется толщиномером или микрометром и выражается в мм или мкм. Для этого используется образец бумаги размером 100 х 100 мм. Измерения толщины производятся в пяти местах образца, затем рассчитывается среднее арифметическое значение - hср.

Масса квадр. метра (граммаж)

Масса квадратного метра бумаги характеризует ее толщину, так как чем толще бумага, тем она тяжелее (при условии равной плотности).

Определяется взвешиванием образца бумаги, размером 100 х 100 мм на специальных квадрантных весах.

Плотность

Плотность - масса 1 см3 бумаги. Она определяется отношением массы материала к его объему. d=, г/см 3

Для расчета плотности бумаги используются значения массы квадратного метра и толщины бумаги. m равна массе квадратного метра в граммах, а объем V (см3) равен произведению площади листа бумаги S (в см2) на среднюю толщину hср (в см).

Пористость

Пористость - это объем пор, содержащихся в 1 см3 бумаги.

Определяется расчетным способом:

П= · (Vп/ Vб) х 100% ,

где Vп - объем пор

У бумаги различают две стороны: прилегающую к сетке бумагоделательной машины и прилегающую к сукну. Сеточная сторона почти всегда грубее вследствие ромбовидной маркировки сетки, по которой движется еще не застывшее бумажное полотно при изготовлении. Различие в гладкости и пористости обеих сторон бумаги называют двусторонностью.

Бумага имеет определённую структуру, обусловленную большей ориентацией волокон в направлении движения сетки бумагоделательной машины и большим натяжением, испытываемым бумагой в этом направлении, известном под названием машинного. Поперечным является направление бумаги под прямым углом к направлению движения сетки бумагоделательной машины.

Структурно-механические свойства

Масса (вес) является наиболее распространённым показателем, т.к. большинство бумаг продают по массе 1 м 2 . Массу бумаги чаще относят к единице площади, чем к единице объёма, как это делают в отношении других материалов, т.к. бумагу используют в виде листа, и поэтому площадь в данном случае играет более важную роль, чем объём. По массе одного квадратного метра мелованного листа бумагу подразделяют на легкую (до 60 г/м 2), средней плотности (70—150 г/м 2) и высокой плотности (более 150 г/м 2). Употребление слова «плотность» в
данном случае не совсем корректно, но оно благозвучнее, чем термин «граммаж», который часто используют в профессиональной среде для обозначения массы одного квадратного метра бумаги.

Толщина бумаги (мкм) является важным фактором в характеристике многих других видов бумаги и определяет как проходимость бумаги в печатной машине, так и потребительские свойства (в первую очередь прочностные) готового изделия.

Механическая прочность — одно из основных и важных свойств большинства видов бумаги и картона. Стандарты на печатные виды бумаг предусматривают определённые требования механической прочности на разрыв. Эти требования определяются возможностью выработки на современных быстроходных машинах печатных видов бумаги без обрывов с последующим пропуском её через быстроходные перемотно-резательные станки и в дальнейшем на печатных машинах.

Достаточная механическая прочность бумаги должна обеспечивать безостановочную работу печатных машин на полиграфических предприятиях. В бумажной промышленности принято сопротивление бумаги разрыву характеризовать показателями разрывного груза или разрывной длиной бумаги. Обычная бумага, изготовленная на бумагоделательной машине (БМ), отличается
различными показателями прочности в машинном и поперечном направлении листа. В машинном направлении она больше, так как волокна в готовой бумаге ориентированы в машинном направлении.

Показатель сопротивления бумаги (картона) излому — один из существенных показателей, характеризующих механическую прочность бумаги. Он зависит от длины волокон, из которых образована бумага, их прочности, гибкости и сил связи между волокнами. Поэтому наиболее высоким сопротивлением излому отличается бумага, состоящая из длинных, прочных, гибких и прочно связанных между собой волокон. Для печатных видов бумаги наиболее значимый показатель в процессе переплётно-брошюровочых работ полиграфического производства.

Показатель качества — сопротивление продавливанию — нельзя отнести к числу основных. Он предусматривает по действующим стандартам для сравнительно ограниченного количества видов бумаги. Важное значение этот показатель имеет для упаковочно-обёрточных видов бумаги. Этот показатель в некоторой степени связан с показателями разрывного груза бумаги и удлинения её при разрыве.

Для некоторых видов бумаги и картона показатель сопротивления поверхности этих материалов истиранию служит одним из критериев, определяющих потребительские свойства материала. Это относится к чертёжно-рисовальным и картографическим видам бумаги. Эти бумаги допускают без излишнего повреждения поверхности возможность удаления написанного, нарисованного или
напечатанного путем подчистки резинкой, лезвием бритвы или ножа.
Одновременно подобная бумага с хорошей поверхностной прочностью на истирание должна сохранять удовлетворительный внешний вид после повторного нанесения текста или рисунка на стёртом месте.

Влагопрочность, или прочность во влажном состоянии — важный фактор большинства бумаг, особенно у бумаги, изготовленной на быстроходных бумагоделательных машинах, так как должна обеспечиваться бесперебойная работа БМ при переходе бумажного полотна из одной секции машины в другую. О влагопрочности бумаги судят по степени сохранения ею во влажном состоянии
первоначальной своей прочности, т.е. той прочности, которую она имела до увлажнения, находясь в воздушно-сухом состоянии.

Удлинение бумаги до разрыва, или её растяжимость характеризует способность бумаги растягиваться; особо важно для упаковочной бумаги, мешочной, бумаги и картона для производства штампованных изделий (бумажные стаканы), основы парафинированной бумаги для автоматической завертки конфет (т.н. карамельной бумаги).

Увеличение размеров увлажнённого листа бумаги по его ширине и длине, выраженное в процентах по отношению к первоначальным размерам сухого листа, носит название линейной деформации при увлажнении. Значения деформации бумаги при намокании и остаточной являются важными показателями для многих видов бумаги (офсетной, диаграммной, картографической, основы фотоподложки, бумаги с водяными знаками). Высокие значения показателей деформации бумаги приводят к несовмещению контуров красок при печати и, как следствие, получению некачественной печати. Однако надо отметить, что ГОСТ предполагает очень жёсткие условия испытаний (намокание калиброванной полоски бумаги в течение определенного времени), использование которых для большинства печатных видов бумаги нецелесообразно. Европейские нормы предполагают использование термина «влагорасширение», определяющего изменение линейных размеров полоски бумаги при изменении влажности воздуха от 30 до 80%.

Гладкость характеризует состояние поверхности бумаги, обусловленное механической отделкой. Гладкость характеризует внешний вид бумаги; шероховатая бумага, как правило, на вид непривлекательна. Гладкость важна для писчих видов бумаги, для печатных бумаг, а также при склейке бумаги.

Просвет бумаги характеризует степень однородности её структуры, т.е. степень равномерности распределения в ней волокон. О просвете бумаги судят по наблюдению в проходящем свете. Бумага с сильно облачным просветом крайне неоднородна. Её тонкие места являются и наименее прочными. Они оказывают меньшее сопротивление прохождению воды, чернил, печатной краски. Вследствие этого и печать на облачной бумаге оказывается низкого качества из-за неравномерности восприятия бумагой печатной краски.

Бумага неравномерная по просвету, а, следовательно, и по толщине, отличается повышенной склонностью к короблению поверхности. Нанесение покрытий на поверхность такой бумаги (мелование, лакирование, парафинирование) связано с производственными затруднениями и влечёт за собой появление брака. Каландрирование бумаги облачного просвета также связанно с повышенным образованием брака; на поверхности появляются залощённые пятна.

Бумага с облачным просветом трудно окрашивается, образуется разнотоновая облачность. Интенсивнее окрашиваются толстые участки бумажного полотна и менее интенсивно-тонкие.

Оптические свойства

Оптические свойства бумаги не менее важны, чем структурно-механические. Для некоторых видов бумаги (типа печатные, прозрачные упаковочные, чертёжная, фотографическая, писчие) оптические свойства имеют первостепенное значение. Важными показателями оптических свойств являются: белизна, светонепроницаемость, прозрачность (непрозрачность), лоск и цвет.

Истинная белизна бумаги связана с её яркостью или абсолютной отражательной способностью, т.е. визуальной эффективностью. Белизна базируется на измерении отражения света белыми или почти белыми бумагами с одной длиной волны (ГОСТ предусматривает 457 миллимикрон, т.е. в видимом спектре).
Белизна определяется как отношение количеств «упавшего» и распределенно отражённого света (%).

Пожелтение бумаги — это термин, которым условно называют снижение её белизны от воздействия световых лучей или повышенной температуры. От светового разрушения бумага может быть защищена хранением её в помещении без окон или с окнами, покрытыми плотными шторами.

Светонепроницаемость — способность бумаги пропускать лучи света. Свойство непрозрачности бумаги определяется общим количеством пропускаемого света (рассеянного и нерассеянного). Непрозрачность обычно определяется степенью «проникновения» изображения в испытываемый материал, помещённый прямо против рассматриваемого предмета.

Чаще применяется термин непрозрачность бумаги — отношение количества света, отраженного от листа, лежащего на чёрной подложке к свету, отражённому светонепроницаемой стопой этой бумаги.

Прозрачность определённым образом связана с непрозрачностью, но отличается от неё тем, что определяется количеством света, который проходит без рассеивания. Коэффициент прозрачности является лучшей оценкой высокопрозрачных материалов (калек), тогда как измерение непрозрачности более пригодно для относительно непрозрачных бумаг.

Лоск (глянец) является свойством бумаги, выражающим степень лощёности, глянца или способности поверхности отражать изображения. Лоск можно рассматривать как свойство поверхности бумаги отражать свет под данным углом отражения в большей степени, чем рассеянное отражение света под тем же углом. Таким образом, лоск (глянец) — относительное количество света,
отражённого в зеркальном направлении к количеству упавшего света.

Химические свойства

Химические свойства бумаги в основном определяются видом применяемой древесины, методом и степенью варки и отбелки, а также типом и количеством добавленных неволокнистых компонентов. Эти свойства бумаги имеют важное значение, так как они влияют на её физические, электрические и оптические свойства.

Для некоторых видов бумаги химические свойства имеют такое же важное значение, как и физические, а в некоторых случаях — даже большее значение. Примером может служить антикоррозийная бумага, применяемая для упаковки серебряных и полированных изделий из стали. Эта бумага не должна содержать серы и сульфидов, а также свободных кислот, хлора и крепких щелочей, вызывающих потускнение или травление металлической поверхности. Лучшие сорта антикоррозийной бумаги изготовляют из хорошо очищенного и отбеленного тряпья
или из сульфидной целлюлозы, которые несколько раз тщательно промывают для удаления остатков отбеливающих веществ. Подобным же образом должна быть изготовлена бумага для печати типографской краской при помощи металлического шрифта или для покрытия золотой фольгой, так как металл в краске или фольга будут тускнеть при соприкосновении с бумагой, содержащей восстановимую серу даже в количестве двух частей на миллион частей бумаги. Некоторые антикоррозийные бумаги, применяемые для упаковки серебряных изделий, пропитывают солями (например, уксуснокислой медью, ацетатом свинца или ацетатом цинка), которые вступают в реакцию с сероводородом, содержащимся в некотором количестве в атмосфере, и тем устраняют соприкосновение газа с серебром.

Химические свойства имеют большое значение для следующих видов бумаги:

  • фотографической (для репродукции);
  • безопасной (в отношении подделок);
  • для бумаги, от которой требуется высокая степень неизменяемости, электрической бумаги, предназначаемой для пропитки смолами, и бумаги для
    упаковки пищевых продуктов.

Эти бумаги не должны содержать ядовитых веществ; кислотность и наполнители в бумаге должны соответствовать ее назначению.

Влажность . Соотношение целлюлоза/вода является наиболее важным фактором в химии бумаги. Количество воды, содержащейся в отдельных волокнах, влияет на их прочность, эластичность и бумагообразующие свойства. Содержание влаги в бумаге влияет на её вес, прочность, неизменяемость, устойчивость размеров и электрические свойства; оно имеет очень важное значение при каландрировании, печатании, покрытии и пропитке. При испытании бумаги её обычно кондиционируют для того, чтобы создать во время испытании постоянную, предопределенную влажность во время испытаний.

Зольность бумаги зависит в основном от количественного содержания наполнителей в её композиции. Бумага высокой прочности должна иметь низкое содержание золы, так как минеральные вещества уменьшают прочность бумаги. Высокое содержание золы нежелательно в таких видах бумаги, как фотографические, электроизоляционные, фильтровальные.

Микроскопические анализы

Кроме обычно применяемых химических, физических и оптических испытаний бумаги, важные сведения о её свойствах можно получить путём исследования под микроскопом. К числу важных областей применения микроскопа на практике относятся определения длины и вида волокна, состав по волокну, анализ загрязнений, пятен, определение степени обработки волокна, изучение смоляной и крахмальной проклейки и исследование бумаги в отношении наполнителей.

Правильный выбор бумаги по её свойствам позволяет получить необходимое качество конкретной полиграфической продукции.

Первым показателем является масса одного квадратного метра (г/м2). По принятой классификации масса 1 м2 печатной бумаги может составлять от 40 до 250 грамм. Бумаги с массой выше 250 г/м2 относятся к картонам.

Показатели качества бумаги, определяющие её печатные свойства могут быть объединены в следующие группы:

Геометрические: гладкость, толщина и масса 1 м2, плотность и пористость;

Оптические: оптическая яркость, непрозрачность, глянец;

Механические (прочностные и деформационные): прочность поверхности к выщипыванию, разрывная длина или прочность на разрыв, прочность на излом, сопротивление раздиранию, сопротивление расслаиванию, жесткость, упругость при сжатии и т.д.

Сорбционные: влагопрочность, гидрофобность, способность впитывать растворители печатных красок.

Все эти показатели имеют тесную зависимость друг от друга. Степень их влияния на оценку печатных свойств бумаги различна для различных способов печати.

Бумагу часто классифицируют по степени отделки поверхности. Это может быть бумага без отделки - матовая, бумага машинной гладкости и глазированная (иначе каландрированная) бумага, которую дополнительно обрабатывали в суперкаландрах для придания ей высокой плотности и гладкости.

Геометрические свойства бумаги

Гладкость бумаги, то есть микрорельеф, микрогеометрия ее поверхности определяет "разрешающую способность" бумаги: ее способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги. Различные способы печати предъявляют к бумаге различные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 сек., а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 сек. Бумага для глубокой печати отличается повышенной гладкостью, которая составляет от 300 до 700 сек. Газетная бумага не может быть гладкой в силу высокой пористости. Существенно улучшает гладкость поверхности нанесение любого покровного слоя - будь то поверхностная проклейка, пигментирование, легкое или простое мелование, которое, в свою очередь может быть различным: односторонним и двухсторонним, однократным и многократным и т.д.

Поверхностная проклейка - это нанесение на поверхность бумаги тонкого слоя проклеивающих веществ (масса покрытия составляет до 6 г/м2 с целью обеспечения высокой прочности поверхности бумаги, предохраняющей ее от выщипывания отдельных волокон липкими красками, а также для уменьшения деформации бумаги при увлажнении для обеспечения точного совпадения красок в процессе многокрасочной печати. Особенно это важно для офсетной и литографской печати, когда бумага подвергается увлажнению водой в процессе печати.

Пигментирование и мелование бумаги отличаются только массой наносимого покрытия. Так считается, что масса покровного слоя в пигментированных бумагах не превышает 14 г/м2, а в мелованных бумагах достигает 40 г/м2. Меловой слой отличается высокой степенью белизны и гладкости. Высокая гладкость - одна из наиболее важных характеристик мелованных бумаг. Их гладкость достигает 1000 сек. и более, а высота рельефа не превышает 1 мкм. Показатель гладкости не только обеспечивает оптимальное взаимодействие бумаги и краски, но и улучшает оптические свойства поверхности, воспринимающей красочное изображение. Высокая гладкость мелованной бумаги позволяет вести печать с хорошей пропечаткой при малых толщинах красочного слоя.

Обратной величиной гладкости является шероховатость, которая измеряется в микрометрах. Она напрямую характеризует микрорельеф поверхности бумаги. Как правило, в технических спецификациях бумаги указывают одну из двух этих величин.

Важной геометрической характеристикой бумаги, наряду с толщиной и массой 1 м2, является пухлость. Она характеризует степень спрессованности бумаги и очень тесно связана с такой оптической характеристикой, как непрозрачность. То есть, чем пухлее бумага, тем она более непрозрачна при равном граммаже. Пухлость измеряется в см3/г. Пухлость печатных бумаг колеблется, в среднем, от 2 см3/г (для рыхлых, пористых) до 0,73 см3/г (для высокоплотных каландрированных бумаг).

{В практическом приложении это означает, что, если брать более пухлую бумагу меньшего граммажа, то при равной непрозрачности, в тонне бумаги будет больше листов}

Пористость непосредственно влияет на впитывающую способность бумаги, то есть на ее способность воспринимать печатную краску и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры, - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги, например, газетная - макропористые. Общий объем пор в таких бумагах достигает 60% и более, а средний радиус пор составляет около 0,16-0,18 мкм. Такие бумаги хорошо впитывают краску, благодаря своей рыхлой структуре, то есть сильноразвитой внутренней поверхности.

Мелованные бумаги относятся к микропористым, иначе капиллярным бумагам. Они тоже хорошо впитывают краску, но уже под действием сил капиллярного давления. Здесь пористость составляет всего лишь 30%, а размер пор не превышает 0,03 мкм. Остальные бумаги занимают промежуточное положение.

{Фактически, это означает, что при печати на офсетной бумаге в поры проникают как растворители, содержащиеся в краске, так и красящие пигменты. Таким образом, концентрация пигмента на поверхности невелика и невозможно добиться насыщенных цветов. При печати же на мелованной бумаге, диаметр пор мелованного слоя настолько мал, что в поры впитываются только растворители, в то время, как частицы пигмента остаются на поверхности бумаги. Поэтому изображение получается очень насыщенное.}

Оптические свойства бумаги

Особое место в структуре печатных свойств бумаги занимают оптические свойства, то есть белизна, непрозрачность, лоск(глянец).

Оптическая яркость - это способность бумаги отражать свет рассеянно и равномерно во всех направлениях. Высокая оптическая яркость для печатных бумаг весьма желательна, так как четкость, удобочитаемость издания зависит от контрастности запечатанных и пробельных участков оттиска.

При многокрасочной печати, цветовая точность изображения, ее соответствие оригиналу возможны только при печатании на достаточно белой бумаге. Для повышения оптической яркости в дорогие высококачественные бумаги добавляют так называемые оптические отбеливатели - люминофоры, а также синие и фиолетовые красители, устраняющие желтоватый оттенок, присущий целлюлозным волокнам. Этот технологический прием называют подцветкой. Так, мелованные бумаги без оптического отбеливателя имеют оптическую яркость не менее 76%, а с оптическим отбеливателем - не менее 84%. Печатные бумаги с содержанием древесной массы должны иметь оптическую яркость не менее 72%, а вот может быть недостаточно белой. Её оптическая яркость составляет в среднем 65%.

Еще одним важным практическим свойством печатной бумаги является ее непрозрачность. Особенно важна непрозрачность при двухсторонней печати. Для повышения непрозрачности подбирают композицию волокнистых материлов, комбинируют степень их помола, вводят наполнители.

К оптическим свойствам бумаги относится также ее лоск или глянец. Лоск, или глянец, - это результат зеркального отражения поверхностью бумаги падающего на нее света. Естественно, это тесно связано с микрогеометрией поверхности, то есть с гладкостью бумаги. Обычно с повышением гладкости лоск тоже увеличивается. Однако, эта связь неоднозначна. Следует помнить, что гладкость определяется механическим способом, а лоск - это оптическая характеристика. Глянец глазированной бумаги может составлять 75-80%, а матовой - до 30%.

Большинство потребителей печатной продукции отдает предпочтение глянцевым бумагам, однако глянец нужен в изданиях далеко не всегда. Так, при воспроизведении текста или штриховых иллюстраций применяют бумагу с минимальным глянцем, например, бумагу машинной гладкости. А различные проспекты, этикетки, репродукции с картин прекрасно получаются на бумаге с высоким глянцем.

Механические свойства бумаги

Следующая группа печатных свойств - это механические свойства бумаги, которые можно подразделить на прочностные и деформационные. Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфии сопровождаются сущетвенным деформированием бумаги, например: растяжению, сжатию, изгибу. От того, как ведет себя бумага при этих воздействиях, зависит нормальное (бесперебойное) течение технологических процессов печатания и последующей обработки печатной продукции. Так, при печатании высоким способом с жестких форм при больших давлениях бумага должна быть мягкой, то есть легко сжиматься, выравниваться под давлением, обеспечивая наиболее полный конакт с печатной формой.

Мягкость бумаги связана с ее структурой, то есть с ее плотностью и пористостью. Так крупнопористая газетная бумага может деформироваться при сжатии до 28%, а у плотной мелованной бумаги деформация сжатия не превышает 6-8%. Для высокой печати важно, чтобы эти деформации были полностью обратимыми, чтобы после снятия нагрузки, бумага полностью восстанавливала первоначальную форму. В противном случае, на оттиске видны следы оборотного рельефа, свидетельствующие о том, что в структуре бумаги произошли серьезные изменения. Если же бумага предназначена для отделки тиснением, то целью становится, наоборот, остаточная деформация, а показателем качества является ее необратимость, то есть устойчивость рельефа тиснения.

Для офсетной печати на высокоскоростных ротационных машинах очень важными являются прочностные характеристики бумаги, а именно: прочность на разрыв, излом, стойкость к выщипыванию, влогопрочность. Прочность бумаги зависит не от прочности отдельных компонентов, а от прочности самой структуры бумаги, которая формируется в процессе бумажного производства. Это свойство характеризуется обычно разрывной длиной в метрах или разрывным усилием в ньютонах. Так для более мягких типографских бумаг, разрывная длина составляет не менее 2500 м, а для жестких офсетных, эта величина возрастает уже до 3500 м и более.

Бумаги, предназначенные для плоской печати, должны иметь минимальную деформацию при увлажнении, так как по условиям технологии печатного процесса, они соприкасаются увлажненными поверхностями. Бумага - материал гигроскопичный. При увеличении влажности ее волокна набухают и расширяются, главным образом по диаметру; бумага теряет форму, коробится и морщится, а при высушивании происходит обратный процесс: бумага дает усадку, в результате чего меняется формат. Повышенная влажность резко снижает механическую прочность бумаги на разрыв, бумага не выдерживает высоких скоростей печатания и рвется. Изменение влажности бумаги в процессе многокрасочной печати приводит к несовмещению красок и нарушению цветопередачи.

Для повышения влагостойкости бумаги в состав бумажной массы при изготовлении добавляют гидрофобные вещества (эта операция называется проклейкой в массе) или же проклеивающие вещества наносятся на поверхность уже готовой бумаги (поверхностная проклейка). Высоко проклеиваются офсетные бумаги и особенно те из них, которые при использовании подвергаются резким изменениям климатических условий или запечатываются во много краскопрогонов, например, картографические бумаги.

Сорбционные свойства бумаги

Наконец, мы вплотную подошли к одному из важнейших свойств печатной бумаги - ее впитывающей способности. Правильная оценка впитывающей способности означает выполнение условий своевременного и полного закрепления краски и, как результат - получение качественного оттиска.

Впитывающая способность бумаги, в первую очередь зависит от ее структуры, так как процессы взаимодействия бумаги с печатной краской принципиально различны. Прежде чем говорить об особенностях этого взаимодействия в тех или иных случаях, необходимо еще раз вспомнить основные типы структур современных печатных бумаг. Если изобразить структуры бумаги в виде шкалы, то на одном из ее концов разместятся макропористые бумаги, состоящие целиком из древесной массы, например, газетные. Другой конец шкалы, соответственно, займут чистоцеллюлозные микропористые бумаги, например, мелованные. Немного левее расположатся чистоцеллюлозные немелованные бумаги, тоже микропористые. А все остальные займут оставшийся промежуток.

Макропористые бумаги хорошо воспринимают краску, впитывая ее как единое целое. Краски здесь маловязкие. Жидкая краска быстро заполняет крупные поры, впитываясь на достаточно большую глубину. Причем чрезмерное ее впитывание может даже вызвать "пробивание" оттиска, то есть изображение становится видным с обороной стороны листа. Повышенная макропористость бумаги нежелательна, например, при иллюстрационной печати, когда чрезмерная впитываемость приводит к потере насыщенности и глянцевитости краски. Для микропористых (каппилярных) бумаг характерен механизм так называемого "избирательного впитывания", когда под действием сил капиллярного давления в микропоры поверхностного слоя бумаги впитывается, преимущественно, маловязкий компонент краски (растворитель), а пигмент и пленкообразователь остаются на поверхности бумаги. Именно это и требуется для получения четкого изображения. Так как механизм взаимодействия бумага-краска в этих случаях различен, для мелованных и немелованных бумаг готовят различные краски.

 Top