Использование солнечной энергии на земле кратко. Реферат: Солнечная энергия и перспективы ее использования

Солнце проделало большую работу, чтобы отправить нам свою энергию, поэтому давайте ценить это! Теплый луч света на лице, был на поверхности Солнца восемь минут и девятнадцать секунд назад

1 . В ысушить одежду

Солнце проделало большую работу, чтобы отправить нам свою энергию, поэтому давайте ценить это! Теплый луч света на лице, был на поверхности Солнца восемь минут и девятнадцать секунд назад. Как минимум, используем его, чтобы высушить одежду. Поскольку солнце гигантский ядерный реактор, расскажите своим друзьям: у вас есть атомная сушилка для белья.

2 . В ы р а с т и т ь с в о ю е д у

Уберите солнце, и что сможет расти? С помощью лишь почвы и солнечного света мы можем выращивать помидоры, перец, яблоки, малину, зеленый салат и многое другое. Постройте солнечные теплицы, которые хранят тепло солнца и вы сможете выращивать пищу даже во время холодной зимы.



3 . Н а г р е т ь в о д у

Семьдесят миллионов китайских семей используют солнце для нагрева воды так почему и нет? Вы можете использовать вакуумную трубу или плоскую пластину, чтобы собрать солнечное тепло. При инвестициях в размере около $ 6800, эти механизмы обеспечат 100 процентов горячей воды летом, и 40 процентов в зимний период.

4 . О ч и с т и т ь в о д у

Если ваш местный водопровод небезопасно, вы можете использовать солнце для дезинфекции воды, заполнив пластиковые бутылки и оставив их на солнце в течение не менее шести часов. Солнечные ультрафиолетовые лучи убьют все бактерии и микроорганизмы. Если вы живете на берегу моря, вы можете использовать солнечную энергию для опреснения воды.

5 . С о здать сво е э л е к т р и ч е с т в о

Установите на крыше солнечные батареи.



6. Привести автомобиль в движени е

Представьте автомобиль который питается только от солнца. Nissan Leaf EV 16000 километров в год, например, будет использовать 2000 кВт электроэнергии. Фотоэлектрическая система на вашей крыше будет генерировать 2200 кВт-ч в год, и как только вы выплатили солнечные панели, энергия является бесплатной.

7 . Д л я д и з айна вашег о д о м а

При проектировании пассивного солнечного дома, окна на южной стороне и изоляция на севере создают тепловую массу для хранения солнечного тепла. Эти шаги могут снизить потребности в отоплении на 50 процентов. Максимально естественное освещение солнца уменьшает необходимость в искусственной подсветке.

8. Для отопления дома

9. Готовить пищу

Существуют различные виды солнечных плит: некоторые используют отражающую солнечные окна, другие параболическая диски. Летом вы также можете сделать свою собственную солнечную сушку для фруктов и овощей в вашем саду.



10. Энергия для мира

Каждый день, солнце излучает в тысячу раз больше тепла в пустынях мира, чем мы используем. Солнечная тепловая технология, с помощью параболических или солнечных башен, можно конвертировать эту энергию в пар, а затем электричество. Мы могли бы решить все мировые энергетические потребности, используя только пять процентов Техаса для солнечной тепловой энергии. Так кто нуждается в нефти и нефтяных разливах?

Реферат

на тему:

«Использование солнечной энергии»

Выполнили учащиеся 8Б класса средней школы № 52

Ларионов Сергей и

Марченко Женя.

Орск 2000 г.

«Сначала хирург, а потом капи­тан нескольких кораблей» Лемюэль Гулливер в одном из своих путе­шествий попал на летающий ос­тров - Лапуту. Зайдя в один из заброшенных домов в Лагадо, сто­лице Лапутии, он обнаружил там странного истощенного человека с закопченным лицом. Его платье, рубаха и кожа почернели от копоти, всклокоченные волосы и борода были местами опалены. Этот не­исправимый прожектер восемь лет разрабатывал проект извлечения из огурцов солнечных лучей. Эти лучи он намеревался собирать в герметически закупоренные склянки, чтобы в случае холод­ного или дождливого лета обогре­вать ими воздух. Он выразил уве­ренность, что еще через восемь лет сможет поставлять солнечный свет повсюду, где он потребуется.

Сегодняшние ловцы солнечных лучей совсем не похожи на безумца, нарисованного фантазией Джона­тана Свифта, хотя они занимаются, по существу, тем же, что и свифтовский герой,-пытаются поймать солнечные лучи и найти им энерге­тическое применение.

Уже древнейшие люди думали, что вся жизнь на Земле порождена и неразрывно связана с Солнцем. В религиях самых разных населяю­щих Землю народов, одним из са­мых главных богов всегда был бог Солнца, дарующий животворящее тепло всему сущему.

Действительно, количество энер­гии, поступающей на Землю от ближайшей к нам звезды, огромно. Всего за три дня Солнце посылает Земле столько энергии, сколько со­держится ее во всех разведанных нами запасах топлива! И хотя толь­ко третья часть этой энергии до­стигает Земли - остальные две трети отражаются или рассеиваются атмосферой, - даже эта ее часть более чем в полторы тысячи раз превосходит все остальные, исполь­зуемые человеком источники энер­гии, вместе взятые! Да и вообще все источники энергии, имеющиеся на Земле, порождены Солнцем.

В конечном счете именно сол­нечной энергии человек обязан всеми своими техническими дости­жениями. Благодаря солнцу возни­кает круговорот воды в природе, образуются потоки воды, вращаю­щей водяные колеса. По-разному нагревая землю в различных точках нашей планеты, солнце вызывает движение воздуха, тот самый ветер, который наполняет паруса судов и вращает лопасти ветряных уста­новок. Все ископаемое топливо, используемое в современной энергетике, ведет свое происхождение опять же от солнечных лучей. Это их энергию с помощью фотосин­теза преобразовали растения в зе­леную массу, которая в результате длительных процессов превратилась в нефть, газ, уголь.

Нельзя ли использовать энергию солнца непосредственно? На первый взгляд это не такая уж сложная задача. Кто не пробовал в солнеч­ный день при помощи обыкновен­ной лупы выжигать на деревянной дощечке картинку! Минута, дру­гая - и на поверхности дерева в том месте, где лупа собрала сол­нечные лучи, появляется черная точка и легкий дымок. Именно та­ким образом один из самых люби­мых героев Жюля Верна, инженер Сайрус Смит, выручил своих дру­зей, когда у них, попавших на таинственный остров, погас костер. Инженер сделал линзу из двух ча­совых стекол, пространство между которыми было заполнено водой. Самодельная «чечевица» сосредо­точила солнечные лучи на охапке сухого мха и воспламенила его.

Этот сравнительно нехитрый способ получения высокой темпе­ратуры люди знали с глубокой древ­ности. В развалинах древней сто­лицы Ниневии в Месопотамии на­шли примитивные линзы, сделанные еще в XII веке до нашей эры. Толь­ко «чистым» огнем, полученным непосредственно от лучей солнца, полагалось зажигать священный огонь в древнеримском храме Весты.

Интересно, что древними инже­нерами подсказана и другая идея концентрации солнечных лучей - с помощью зеркал. Великий Архи­мед оставил нам трактат «О за­жигательных зеркалах». С его име­нем связана поэтическая легенда, рассказанная византийским поэтом Цецесом.

Во время Пунических войн род­ной город Архимеда Сиракузы был осажден римскими кораблями. Ко­мандующий флотом Марцелл не сомневался в легкой победе - ведь его войско было намного сильнее защитников города. Одного не учел заносчивый флотоводец - в борьбу с римлянами вступил великий инже­нер. Он придумал грозные боевые машины, построил метательные орудия, которые осыпали римские корабли градом камней или увесис­той балкой пробивали дно. Другие машины крючковатым краном под­нимали суда за нос и разбивали их о прибрежные скалы. А однажды римляне с изумлением увидели, что место воинов на стене осажденного города заняли женщины с зерка­лами в руках. По команде Архи­меда они направили солнечные зай­чики на одно судно, в одну точку. Через короткое время на судне вспыхнул пожар. Та же участь постигла еще несколько кораблей на­падавших, пока они в растерянности не бежали подальше, за пределы досягаемости грозного оружия.

Долгие века эта история счи­талась красивым вымыслом. Однако некоторые современные исследова­тели истории техники провели рас­четы, из которых следует, что зажи­гательные зеркала Архимеда в принципе могли существовать.

Солнечные коллекторы

Использовали наши предки сол­нечную энергию и в более проза­ических целях. В Древней Греции и в Древнем Риме основной массив лесов был хищнически вырублен для строительства зданий и судов. Дрова для отопления почти не ис­пользовались. Для обогрева жилых домов и оранжерей активно исполь­зовалась солнечная энергия. Архи­текторы старались строить дома так, чтобы в зимнее время на них падало бы как можно больше сол­нечных лучей. Древнегреческий драматург Эсхил писал, что цивили­зованные народы тем и отличаются от варваров, что их дома «обра­щены лицом к солнцу». Римский писатель Плиний Младший указы­вал, что его дом, расположенный севернее Рима, «собирал и увели­чивал тепло солнца за счет того, что его окна располагались так, чтобы улавливать лучи низкого зим­него солнца».

Раскопки древнего греческого го­рода Олинфа показали, что весь город и его дома были спроекти­рованы по единому плану и рас­полагались так, чтобы зимой можно было поймать как можно боль­ше солнечных лучей, а летом, на­оборот, избегать их. Жилые комна­ты обязательно располагались ок­нами к солнцу, а сами дома имели два этажа: один-для лета, дру­гой-для зимы. В Олинфе, как и позже в Древнем Риме, запреща­лось ставить дома так, чтобы они заслоняли от солнца дома сосе­дей,-урок этики для сегодняш­них создателей небоскребов!

Кажущаяся простота получения тепла при концентрации солнечных лучей не однажды порождала не­оправданный оптимизм. Немногим более ста лет назад, в 1882 году, русский журнал «Техник» опубли­ковал заметку об использовании солнечной энергии в паровом дви­гателе: «Инсолатором назван паровой двигатель, котел которого на­гревается при помощи солнечных лучей, собираемых для этой цели особо устроенным отражательным зеркалом. Английский ученый Джон Тиндаль применил подобные кони­ческие зеркала очень большого диаметра при исследовании тепло­ты лунных лучей. Французский про­фессор А.-Б. Мушо воспользовался идеей Тиндаля, применив ее к сол­нечным лучам, и получил жар, до­статочный для образования пара. Изобретение, усовершенствованное инженером Пифом, было доведено им до такого совершенства, что во­прос о пользовании солнечной теп­лотой может считаться оконча­тельно решенным в положитель­ном смысле».

Оптимизм инженеров, построив­ших «инсолатор», оказался не­оправданным. Слишком много пре­пятствий предстояло еще преодо­леть ученым, чтобы энергети­ческое использование солнечного тепла стало реальным. Лишь сейчас, через сто с лишним лет, начала формироваться новая научная дис­циплина, занимающаяся пробле­мами энергетического использова­ния солнечной энергии, - гелиоэнергетика. И лишь сейчас можно говорить о первых реальных успе­хах в этой области.

В чем же сложность? Прежде всего, вот в чем. При общей огром­ной энергии, поступающей от солн­ца, на каждый квадратный метр поверхности земли ее приходится совсем немного - от 100 до 200 ватт, в зависимости от геогра­фических координат. В часы сол­нечного сияния эта мощность до­стигает 400-900 вт/м 2 , и поэтому, чтобы получить заметную мощ­ность, нужно обязательно сначала собрать этот поток с большой по­верхности и затем сконцентриро­вать его. Ну и конечно, большое неудобство составляет то очевид­ное обстоятельство, что получать эту энергию можно только днем. Ночью приходится использовать другие источники энергии или ка­ким-то образом накапливать, акку­мулировать солнечную.

Солнечная опреснительная установка

Поймать энергию солнца можно по-разному. Первый путь - наибо­лее прямой и естественный: при­менить солнечное тепло для нагре­ва какого-нибудь теплоносителя. Потом нагретый теплоноситель можно использовать, скажем, для отопления или горячего водоснаб­жения (здесь не нужна особенно высокая температура воды), или же для получения других видов энер­гии, в первую очередь электри­ческой.

Ловушка для непосредственного использования солнечного тепла совсем проста. Для ее изготовления понадобится прежде всего коробка, закрытая обычным оконным стеклом или подобным ему прозрачным материалом. Оконное стекло не представляет препятствия для сол­нечных лучей, но удерживает тепло, нагревшее внутреннюю поверхность коробки. Это, по существу, парни­ковый эффект, принцип, на кото­ром построены все теплицы, парни­ки, оранжереи и зимние сады.

«Малая» гелиоэнергетика очень перспективна. На земле есть мно­жество мест, где солнце нещадно палит с небосклона, иссушая почву и выжигая растительность, превра­щая местность в пустыню. Сделать такую землю плодородной и оби­таемой в принципе можно. Нужно «только» обеспечить ее водой, по­строить селения с комфортабельны­ми домами. Для всего этого по­требуется прежде всего много энергии. Получить эту энергию от того же иссушающего, губящего солнца, превратив солнце в союз­ника человека, очень важная и инте­ресная задача.

У нас в стране такие работы воз­главил Институт солнечной энергии Академии Наук Туркменской ССР, головной в научно-производствен­ном объединении «Солнце». Со­вершенно ясно, почему это учреж­дение с названием, будто сошед­шим со страниц научно-фантасти­ческого романа, расположено именно в Средней Азии - ведь в Ашхабаде в летний полдень на каждый квадратный километр па­дает поток солнечной энергии, по мощности эквивалентный крупной электростанции!

В первую очередь ученые напра­вили свои усилия на получение с помощью солнечной энергии воды. Вода в пустыне есть, да и найти ее сравнительно нетрудно - расположена она неглубоко. Но ис­пользовать эту воду нельзя - слиш­ком много в ней растворено раз­личных солей, она обычно еще более горькая, чем морская. Чтобы при­менить подпочвенную воду пустыни для полива, для питья, ее нужно обя­зательно опреснить. Если это уда­лось сделать, можно считать, что ру­котворный оазис готов: здесь можно жить в нормальных условиях, пасти овец, выращивать сады, причем круглый год - солнца достаточно и зимой. По расчетам ученых, толь­ко в Туркмении может быть по­строено семь тысяч таких оазисов. Всю необходимую энергию для них будет давать солнце.

Принцип действия солнечного опреснителя очень прост. Это сосуд с водой, насыщенной солями, за­крытый прозрачной крышкой. Вода нагревается солнечными лучами, понемногу испаряется, а пар кон­денсируется на более холодной крышке. Очищенная вода (соли-то не испарились!) стекает с крышки в другой сосуд.

Конструкции этого типа известны довольно давно. Богатейшие залежи селитры в засушливых районах Чили в прошлом веке почти не разраба­тывались из-за отсутствия питьевой воды. Тогда в местечке Лас-Сали-нас по такому принципу был по­строен опреснитель площадью 5 ты­сяч квадратных метров, который в жаркий день давал по 20 тысяч литров пресной воды.

Но только сейчас работы по ис­пользованию солнечной энергии для опреснения воды развернулись широким фронтом. В туркмен­ском совхозе «Бахарден» впервые в мире запустили самый настоя­щий «солнечный водопровод», обеспечивающий потребности лю­дей в пресной воде и дающий воду для полива засушливых земель. Миллионы литров опресненной во­ды, полученной из солнечных уста­новок, намного раздвинут границы совхозных пастбищ.

Очень много энергии люди за­трачивают на зимнее отопление жилищ и промышленных зданий, на круглогодичное обеспечение горя­чего водоснабжения. И здесь на по­мощь может прийти солнце. Разра­ботаны гелиоустановки, способные обеспечить горячей водой животно­водческие фермы. Солнечная ло­вушка, разработанная армянскими учеными, очень проста по конструк­ции. Это прямоугольная полутора­метровая ячейка, в которой под специальным покрытием, эффек­тивно поглощающим тепло, расположен волнообразный радиатор из системы труб. Стоит только под­ключить такую ловушку к водопро­воду и выставить ее на солнце, как в летний день из нее будет посту­пать в час до тридцати литров воды, нагретой до 70-80 градусов. Пре­имущество такой конструкции в том, что из ячеек можно строить, как из кубиков, самые разные уста­новки, намного увеличивая произво­дительность солнечного нагрева­теля. Специалисты намечают пере­вести на солнечное теплоснабжение экспериментальный жилой район Еревана. Устройства для нагрева воды (или воздуха), называемые солнечными коллекторами, выпус­каются нашей промышленностью. Созданы десятки солнечных устано­вок и систем для горячего водо­снабжения производительностью до 100 тонн горячей воды в день для обеспечения самых различных объектов.

Солнечные нагреватели уста­новлены на многочисленных доми­ках, построенных в различных мес­тах нашей страны. Одна из сторон крутой крыши, обращенная к солн­цу, состоит из солнечных нагрева­телей, с помощью которых дом отапливается и снабжается горячей водой. Планируется постройка це­лых поселков, состоящих из таких домов.

Не только у нас в стране зани­маются проблемой использования солнечной энергии. В первую оче­редь заинтересовались гелиоэнергетикой ученые стран, расположен­ных в тропиках, где в году бывает очень много солнечных дней. В Ин­дии, например, разработали целую программу использования солнеч­ной энергии. В Мадрасе действует первая в стране солнечная электро­станция. В лабораториях индийских ученых работают эксперименталь­ные опреснительные установки, зерносушилки и водяные насосы. В Делийском университете изго­товлена холодильная гелиоустанов­ка, способная охлаждать продукты до 15 градусов ниже нуля. Так что солнце может не только нагревать, но и охлаждать! В соседней с Ин­дией Бирме студенты из техноло­гического института в Рангуне по­строили кухонную плиту, где сол­нечное, тепло используется для приготовления пищи.

Даже в Чехословакии, располо­женной значительно севернее, ра­ботают сейчас 510 установок сол­нечного теплоснабжения. Общая площадь их действующих коллекто­ров вдвое превышает размеры фут­больного поля! Солнечные лучи обеспечивают теплом детские сады и животноводческие фермы, откры­тые плавательные бассейны и инди­видуальные дома.

В городе Ольгин на Кубе всту­пила в строй оригинальная сол­нечная установка, разработанная кубинскими специалистами. Она расположена на крыше детской больницы и обеспечивает ее горя­чей водой даже в те дни, когда солнце закрыто облаками. По мне­нию специалистов, такие установки, появившиеся уже и в других ку­бинских городах, помогут эконо­мить много топлива.

Строительство «солнечного по­селка» начато в алжирской провин­ции Мсила. Всю энергию жители этого довольно большого поселения будут получать от солнца. Каждый жилой дом в этом поселке будет оборудован солнечным коллекто­ром. Отдельные группы солнечных коллекторов обеспечат энергией промышленные и сельскохозяйст­венные объекты. Специалисты На­циональной научно-исследователь­ской организации Алжира и Уни­верситета ООН, спроектировавшие этот поселок, уверены, что он ста­нет прообразом тысяч подобных поселений в жарких странах.

Право называться первым сол­нечным поселением оспаривает у алжирского поселка австралийский городок Уайт Клиффс, который стал местом строительства ориги­нальной солнечной электростанции. Принцип использования солнечной энергии здесь особый. Ученые На­ционального университета в Кан­берре предложили использовать солнечное тепло для разложения аммиака на водород и азот. Если этим компонентам дать возмож­ность вновь соединиться, выделится тепло, которое можно использо­вать для работы электростанции точно так же, как и тепло, полу­чаемое при сжигании обычного топлива. Этот метод использования энергии особенно привлекателен тем, что энергию можно запасать впрок в виде еще не прореагиро­вавших азота и водорода и исполь­зовать ее ночью или в ненастные дни.

Монтаж гелиостатов Крымской солнечной электростанции

Химический метод получения электричества от солнца вообще довольно заманчив. При его ис­пользовании солнечную энергию можно будет запасать впрок, хра­нить ее как любое другое топливо. Экспериментальная установка, ра­ботающая по такому принципу, со­здана в одном из научных центров в ФРГ. Основной узел этой уста­новки - параболическое зеркало диаметром 1 метр, которое при по­мощи сложных следящих систем постоянно направлено на солнце. В фокусе зеркала концентрирован­ные солнечные лучи создают тем­пературу 800-1000 градусов. Этой температуры достаточно для разло­жения серного ангидрида на сер­нистый ангидрид и кислород, кото­рые закачиваются в специальные емкости. При необходимости ком­поненты подаются в регенерационный реактор, где в присутствии спе­циального катализатора из них образуется исходный серный анги­дрид. При этом температура по­вышается до 500 градусов. Потом тепло можно использовать для того, чтобы превратить воду в пар, вращающий турбину электрогене­ратора.

Ученые Энергетического инсти­тута имени Г. М. Кржижановского проводят эксперименты прямо на крыше своего здания в не столь уж солнечной Москве. Параболическое зеркало, концентрируя солнечные лучи, нагревает до 700 градусов газ, помещенный в металлический цилиндр. Горячий газ не только может превратить в теплообменни­ке воду в пар, который приведет во вращение турбогенератор. В присутствии специального катализа­тора он по пути может быть пре­вращен в окись углерода и водо­род-энергетически значительно более выгодные продукты, чем ис­ходные. Нагревая воду, эти газы не пропадают -они просто остывают. Их можно сжечь и получить допол­нительную энергию, причем тогда, когда солнце закрыто тучами или ночью. Продумываются проекты использования солнечной энергии для накопления водорода - как предполагается, универсального топлива будущего. Для этого мож­но употребить энергию, получен­ную на солнечных электростанциях, расположенных в пустынях, то есть там, где энергию использовать на месте трудно.

Существуют и совсем необыч­ные пути. Солнечный свет сам по себе может расщепить молекулу воды, если будет присутствовать подходящий катализатор. Еще экзо­тичнее уже существующие проекты крупномасштабного производства водорода с помощью бактерий! Процесс идет по схеме фотосин­теза: солнечный свет поглощается, например, синезелеными водорос­лями, которые довольно быстро растут. Эти водоросли могут слу­жить пищей для некоторых бакте­рий, в процессе жизнедеятельности выделяющих из воды водород. Ис­следования, которые провели с раз­ными видами бактерий советские и японские ученые, показали, что в принципе всю энергетику города с миллионным населением может обеспечить водород, выделяемый бактериями, питающимися сине-зелеными водорослями на планта­ции площадью всего 17,5 квадрат­ных километров. По расчетам спе­циалистов Московского государст­венного университета, водоем раз­мером с Аральское море может обеспечить энергией почти всю нашу страну. Конечно, до воплощения в жизнь подобных проектов еще да­леко. Эта остроумная идея и в XXI веке потребует для своего осуществ­ления решить многие научные и инженерные задачи. Использовать для получения энергии живые су­щества вместо огромных машин - идея, стоящая того, чтобы поломать над ней голову.

Проекты электростанции, где турбину будет вращать пар, полу­ченный из нагретой солнечными лучами воды, разрабатывается сей­час в самых различных странах. В СССР экспериментальная солнеч­ная электростанция такого типа по­строена на солнечном побережье Крыма, вблизи Керчи. Место для станции выбрано не случайно- ведь в этом районе солнце светит почти две тысячи часов в год. Кро­ме того, немаловажно и то, что земли здесь солончаковые, не при­годные для сельского хозяйства, а станция занимает довольно боль­шую площадь.

Станция представляет собой не­обычное и впечатляющее соору­жение. На огромной, высотой более восьмидесяти метров, башне уста­новлен солнечный котел парогене­ратора. А вокруг башни на обшир­ной площадке радиусом более полукилометра концентрическими кругами располагаются гелиоста­ты -сложные сооружения, серд­цем каждого из которых является громадное зеркало, площадью бо­лее 25 квадратных метров. Очень непростую задачу пришлось решать проектировщикам станции - ведь все гелиостаты (а их очень мно­го - 1600!) нужно было располо­жить так, чтобы при любом положении солнца на небе ни один из них не оказался в тени, а отбра­сываемый каждым из них солнеч­ный зайчик попал бы точно в вер­шину башни, где расположен паро­вой котел (поэтому башня и сдела­на такой высокой). Каждый гелио­стат оснащен специальным устрой­ством для поворота зеркала. Зерка­ла должны двигаться непрерывно вслед за солнцем - ведь оно все время перемещается, значит, зай­чик может сместиться, не попасть на стенку котла, а это сразу же скажется на работе станции. Еще больше усложняет работу станции то, что траектории движения гелио­статов каждый день меняются: Зем­ля движется по орбите и Солнце ежедневно чуть-чуть меняет свой маршрут по небу. Поэтому управле­ние движением гелиостатов пору­чено электронно-вычислительной машине - только ее бездонная па­мять способна вместить в себя за­ранее рассчитанные траектории движения всех зеркал.

Строительство солнечной электростанции

Под действием сконцентриро­ванного гелиостатами солнечного тепла вода в парогенераторе нагре­вается до температуры 250 гра­дусов и превращается в пар вы­сокого давления. Пар приводит во вращение турбину, та - электро­генератор, и в энергетическую сис­тему Крыма вливается новый ру­чеек энергии, рожденной солнцем. Выработка энергии не прекратится, если солнце будет закрыто тучами, и даже ночью. На выручку придут тепловые аккумуляторы, установ­ленные у подножия башни. Излиш­ки горячей воды в солнечные дни направляются в специальные хра­нилища и будут использоваться в то время, когда солнца нет.

Мощность этой эксперименталь­ной электростанции относительно
невелика - всего 5 тысяч киловатт. Но вспомним: именно такой была мощность первой атомной электро­станции, родоначальницы могучей атомной энергетики. Да и выработ­ка энергии отнюдь не самая глав­ная задача первой солнечной эле­ктростанции - она потому и назы­вается экспериментальной, что с ее помощью ученым предстоит найти решения очень сложных задач эксплуатации таких станций. А та­ких задач возникает немало. Как, например, защитить зеркала от за­грязнения? Ведь на них оседает пыль, от дождей остаются потеки, а это сразу же снизит мощность станции. Оказалось даже, что не вся­кая вода годится для мытья зеркал. Пришлось изобрести специальный моечный агрегат, который следит за чистотой гелиостатов. На экспе­риментальной станции сдают экза­мен на работоспособность устрой­ства для концентрации солнечных лучей, их сложнейшее оборудова­ние. Но и самый длинный путь на­чинается с первого шага. Этот шаг на пути получения значительных количеств электроэнергии с по­мощью солнца и позволит сде­лать Крымская экспериментальная солнечная электростанция.

Советские специалисты готовят­ся сделать и следующий шаг. Спроектирована крупнейшая в мире солнечная электростанция мощ­ностью 320 тысяч киловатт. Место для нее выбрано в Узбекистане, в Каршинской степи, вблизи молодо­го целинного города Талимарджана. В этом краю солнце светит не ме­нее щедро, чем в Крыму. По прин­ципу действия эта станция не отли­чается от Крымской, но все ее сооружения значительно масштаб­нее. Котел будет располагаться на двухсотметровой высоте, а вокруг башни на много гектаров раскинет­ся гелиостатное поле. Блестящие зеркала (72 тысячи!), повинуясь сигналам ЭВМ, сконцентрируют на поверхности котла солнечные лучи, перегретый пар закрутит турбину, генератор даст ток 320 тысяч кило­ватт-это уже большая мощность, и длительное ненастье, препят­ствующее выработке энергии на солнечной электростанции, может существенно сказаться на потреби­телях. Поэтому в проекте станции предусмотрен и обычный паровой котел, использующий природный газ. Если пасмурная погода затянет­ся надолго, на турбину подадут пар из другого, обычного котла.

Разрабатывают солнечные эле­ктростанции такого же типа и в дру­гих странах. В США, в солнечной Калифорнии, построена первая электростанция башенного типа «Солар-1» мощностью 10 тысяч киловатт. В предгорьях Пиренеев французские специалисты ведут исследования на станции «Темис» мощностью 2,5 тысячи киловатт. Станцию «ГАСТ» мощностью 20 ты­сяч киловатт запроектировали за­падногерманские ученые.

Пока еще электрическая энер­гия, рожденная солнечными лу­чами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они про­ведут на опытных установках и стан­циях, помогут решить не только технические, но и экономические проблемы.

Согласно расчетам, солнце должно помочь в решении не только энергетических проблем, но и задач, которые поставил перед специалистами наш атомный, кос­мический век. Чтобы построить могучие космические корабли, гро­мадные ядерные установки, создать электронные машины, совершаю­щие сотни миллионов операций в секунду, нужны новые
материа­лы - сверхтугоплавкие, сверхпроч­ные, сверхчистые. Получить их очень сложно. Традиционные ме­тоды металлургии для этого не годятся. Не подходят и более изо­щренные технологии, например плавка электронными пучками или токами сверхвысокой частоты. А вот чистое солнечное тепло может оказаться здесь надежным помощ­ником. Некоторые гелиостаты при испытаниях легко пробивают своим солнечным зайчиком толстый алю­миниевый лист. А если таких гелио­статов поставить несколько десят­ков? А затем лучи от них пустить на вогнутое зеркало концентратора? Солнечный зайчик такого зеркала сможет расплавить не только алюминий, но и почти все известные материалы. Специальная плавиль­ная печь, куда концентратор пере­даст всю собранную солнечную энергию, засветится ярче тысячи солнц.

Высокотемпературная печь с диаметром зеркала в три метра.

Солнце плавит металл в тигле

Проекты и достижения, о кото­рых мы рассказали, используют для получения энергии солнечное тепло, которое затем преобразует­ся в электричество. Но еще более заманчив другой путь - прямое преобразование солнечной энергии в электричество.

Впервые намек на связь электри­чества и света прозвучал в трудах великого шотландца Джеймса Клерка Максвелла. Эксперимен­тально эта связь была доказана в опытах Генриха Герца, который в 1886-1889 годах показал, что электромагнитные волны ведут себя точно так же, как и световые, - так же прямолинейно распространяют­ся, образуя тени. Ему удалось да­же сделать гигантскую призму из двух тонн асфальта, которая пре­ломляла электромагнитные волны, как стеклянная призма - световые.

Но еще десятью годами раньше Герц неожиданно для себя заме­тил, что разряд между двумя электродами, происходит гораздо легче, если эти электроды осве­тить ультрафиолетовым светом.

Эти опыты, не получившие раз­вития в работах Герца, заинтересо­вали профессора физики Москов­ского университета Александра Григорьевича Столетова. В феврале 1888 года он приступил к серии опытов, направленных на изучение таинственного явления. Решающий опыт, доказывающий наличие фото­эффекта - возникновение электри­ческого тока под воздействием света, -был проведен 26 февраля. В экспериментальной установке Столетова потек электрический ток, рожденный световыми лучами. Фактически заработал первый фотоэлемент, который впоследствии нашел многочисленные при­менения в самых разных областях техники.

В начале XX века Альберт Эйн­штейн создал теорию фотоэффек­та, и в руках исследователей по­явились, казалось бы, все инстру­менты для овладения этим источ­ником энергии. Были созданы фото­элементы на основе селена, потом более совершенные - таллиевые. Но они обладали очень малым ко­эффициентом полезного действия и нашли применение только в ус­тройствах управления, подобных привычным турникетам в метро, в которых луч света преграждает дорогу безбилетникам.

Следующий шаг был сделан, когда учеными были подробно изу­чены открытые еще в 70-х годах прошлого века фотоэлектрические свойства полупроводников. Оказа­лось, что полупроводники гораздо эффективнее металлов преобра­зуют солнечный свет в электри­ческую энергию.

Академик Абрам Федорович Иоффе мечтал о применении полу­проводников в солнечной энерге­тике еще в 30-е годы, когда сотруд­ники руководимого им Физико-технического института АН СССР в Ленинграде Б. Т. Коломиец и Ю. П. Маслаковец создали медно-таллиевые фотоэлементы с рекорд­ным по тому времени коэффициен­том полезного действия - 1%! Следующим шагом на этом на­правлении поиска было создание кремниевых фотоэлементов. Уже первые образцы их имели коэффи­циент полезного действия 6%. Используя такие элементы, можно было подумать и о практическом получении электрической энергии из солнечных лучей.

Первая солнечная батарея была создана в 1953 году. Поначалу это была просто демонстрационная модель. Какого-то практического применения тогда не предвиде­лось - слишком мала была мощ­ность первых солнечных батарей. Но появились они очень вовремя, для них вскоре нашлось ответствен­ное задание. Человечество готови­лось шагнуть в космос. Задача обеспечения энергией многочис­ленных механизмов и приборов космических кораблей стала одной из первоочередных. Существующие аккумуляторы, в которых можно было бы запасти электрическую энергию, неприемлемо громоздки и тяжелы. Слишком большая часть полезной нагрузки корабля ушла бы на перевозку источников энер­гии, которые, кроме того, посте­пенно расходуясь, скоро превра­тились бы в бесполезный громозд­кий балласт. Самым заманчивым было бы иметь на борту косми­ческого корабля собственную электростанцию, желательно - об­ходящуюся без топлива. С этой точки зрения солнечная батарея оказалась очень удобным устрой­ством. На это устройство и обра­тили внимание ученые в самом на­чале космической эры.

Уже третий советский искус­ственный спутник Земли, выведен­ный на орбиту 15 мая 1958 года, был оснащен солнечной батареей. А теперь широко распахнутые крылья, на которых размещены це­лые солнечные электростанции, стали неотъемлемой деталью кон­струкции любого космического аппарата. На советских косми­ческих станциях «Салют» и «Мир» солнечные батареи в течение мно­гих лет обеспечивают энергией и системы жизнеобеспечения космо­навтов, и многочисленные научные приборы, установленные на стан­ции.

Автоматическая межпланетная станция «Вега»

На Земле, к сожалению, этот способ получения больших коли­честв электрической энергии - дело будущего. Причины этого- уже упоминавшийся нами неболь­шой пока коэффициент полезного действия солнечных элементов. Расчеты показывают: чтобы полу­чить большие количества энергии, солнечные батареи должны занимать огромную площадь - тысячи квадратных километров. Потреб­ность Советского Союза в электро­энергии, например, могла бы удо­влетворить сегодня лишь солнечная батарея площадью 10 тысяч ква­дратных километров, расположен­ная в пустынях Средней Азии. Се­годня произвести такое громадное количество солнечных элементов практически невозможно. При­меняемые в современных фото­элементах сверхчистые материа­лы - чрезвычайно дорогостоящие. Чтобы их изготовить, нужно слож­нейшее оборудование, применение особых технологических процессов. Экономические и технологические соображения пока не позволяют рассчитывать на получение таким путем значительных количеств электрической энергии. Эта задача остается XXI веку.

Гелиостанция

В последнее время советские исследователи - признанные ли­деры мировой науки в сфере кон­струирования материалов для полупроводниковых фотоэлементов - провели ряд работ, позволивших приблизить время создания солнеч­ных электростанций. В 1984 году Государственной премии СССР удо­стоены работы исследователей, возглавляемых академиком Ж. Ал­феровым, которым удалось создать совершенно новые структуры полу­проводниковых материалов для фо­тоэлементов. Коэффициент полез­ного действия солнечных батарей из новых материалов достигает уже 30%, а теоретически он может со­ставить и 90%! Применение таких фотоэлементов позволит в десятки раз сократить площади панелей будущих солнечных электростан­ций. Их можно сократить еще в сот­ни раз, если солнечный поток пред­варительно собрать с большой пло­щади, сконцентрировать и только потом подать на солнечную бата­рею. Так что в будущем XXI веке солнечные электростанции с фото­элементами могут стать обычным источником энергии. Да и в наши дни уже имеет смысл получать энергию от солнечных батарей в тех местах, где других источников энергии нет.

Например, в Каракумах для сварки конструкций фермы при­менили разработанный туркмен­скими специалистами аппарат, использующий энергию солнца. Вместо того, чтобы привозить с со­бой громоздкие баллоны с сжатым газом, сварщики могут использо­вать небольшой аккуратный чемо­данчик, куда помещена солнечная батарея. Рожденный солнечными лучами постоянный электрический ток используется для химического разложения воды на водород и кислород, которые подаются в го­релку газосварочного аппарата. Вода и солнце в Каракумах есть возле любого колодца, так что гро­моздкие баллоны, которые нелегко возить по пустыне, стали не­нужными.

Крупная солнечная электростан­ция мощностью около 300 киловатт создается в аэропорту города Фе­никс в американском штате Ари­зона. Солнечную энергию в элек­тричество будет превращать сол­нечная батарея, состоящая из 7 200 солнечных элементов. В том же Штате действует одна из крупнейших в мире ирригационных сис­тем, насосы которой используют энергию солнца, преобразованную в электричество фотоэлементами. В Нигере, Мали и Сенегале тоже действуют солнечные насосы. Ог­ромные солнечные батареи питают электроэнергией моторы насосов, которые поднимают пресную воду, необходимую в этих пустынных местностях, из огромного подзем­ного моря, расположенного под песками.

Целый экологически чистый го­родок, все энергетические потреб­ности которого будут удовлетво­ряться за счет возобновляемых источников, строится в Бразилии. На крышах домов этого необыч­ного поселения будут распола­гаться солнечные водонагреватели. Четыре ветряных двигателя при­ведут в действие генераторы мощ­ностью по 20 киловатт каждый. В безветренные дни электроэнергия будет поступать из здания, рас­положенного в центре города. Его крыша и стены - это солнечные батареи. Если не будет ни ветра, ни солнца, энергия поступит от обыч­ных генераторов с двигателями внутреннего сгорания, но тоже осо­бенных - топливом для них будет служить не бензин или дизельное топливо, а спирт, не дающий вред­ных выбросов.

Солнечные батареи постепенно входят в наш быт. Уже никого не удивляют появившиеся в магазинах микрокалькуляторы, работающие без батареек. Источником питания для них служит небольшая солнеч­ная батарея, вмонтированная в крышку прибора. Заменяют другие источники питания миниатюрной солнечной батареей и в электрон­ных часах, радиоприемниках и маг­нитофонах. Появились солнечные радиотелефоны-автоматы вдоль до­рог в пустыне Сахара. Перуанский город Тирунтам стал обладателем целой радиотелефонной сети, ра­ботающей от солнечных батарей. Японские специалисты сконструи­ровали солнечную батарею, кото­рая по размерам и по форме на­поминает обыкновенную черепицу. Если такой солнечной черепицей покрыть дом, то электроэнергии хватит для удовлетворения нужд его жильцов. Правда, пока неясно, как они будут обходиться в периоды снегопадов, дождей и туманов? Без традиционной электропроводки обойтись, по-видимому, не удастся.

Вне конкуренции солнечные ба­тареи оказываются там, где сол­нечных дней много, а других источ­ников энергии нет. Например, свя­зисты из Казахстана установили между Алма-Атой и городом Шев­ченко на Мангышлаке две радио­релейные ретрансляционные стан­ции для передачи телевизионных программ. Но не прокладывать же для их питания линию электро­передачи. Помогли солнечные бата­реи, которые дают в солнечные дни, а их на Мангышлаке много - вполне достаточно энергии для пи­тания приемника и передатчика.

Хорошим сторожем для пасу­щихся животных служит тонкая про­волока, по которой пропущен сла­бый электрический ток. Но паст­бища обычно расположены вдали от линий электропередач. Выход предложили французские инже­неры. Они разработали автоном­ную изгородь, которую питает сол­нечная батарея. Солнечная панель весом всего полтора килограмма дает энергию электронному гене­ратору, который посылает в подоб­ный забор импульсы тока высокого напряжения, безопасные, но доста­точно чувствительные для живот­ных. Одной такой батареи хватает, чтобы построить забор длиной 50 километров.

Энтузиастами гелиоэнергетики предложено множество экзоти­ческих конструкций транспортных средств, обходящихся без тради­ционного топлива. Мексиканские конструкторы разработали электро­мобиль, энергию для двигателя которого доставляют солнечные ба­тареи. По их расчетам, при поезд­ках на небольшие расстояния этот электромобиль сможет развивать скорость до 40 километров в час. Мировой рекорд скорости для солнцемобиля - 50 километров в час - рассчитывают установить конструкторы из ФРГ.

А вот австралийский инженер Ганс Толструп назвал свой солнцемобиль «Тише едешь - дальше будешь». Конструкция его предель­но проста: трубчатая стальная рама, на которой укреплены колеса и тормоза от гоночного велосипеда. Корпус машины сделан из стекло­пластика и напоминает собой обы­кновенную ванну с небольшими окошками. Сверху все это сооруже­ние накрыто плоской крышей, на которой закреплено 720 кремние­вых фотоэлементов. Ток от них по­ступает в электромотор мощ­ностью в 0,7 киловатта. Путешест­венники (а кроме конструктора, в пробеге участвовал инженер и автогонщик Ларри Перкинс) по­ставили своей задачей пересечь Австралию от Индийского океана до Тихого (это 4130 километров!) не более чем за 20 дней. В начале 1983 года необычный экипаж стар­товал из города Перт, чтобы фини­шировать в Сиднее. Нельзя сказать, чтобы путешествие было особенно приятным. В разгар австралийского лета температура в кабине подни­малась до 50 градусов. Конструк­торы экономили каждый килограмм веса машины и поэтому отказа­лись от рессор, что отнюдь не спо­собствовало комфортабельности. В пути лишний раз останавливаться не хотели (ведь поездка не должна была продолжаться более 20 дней), а радиосвязью пользоваться было невозможно из-за сильного шума мотора. Поэтому гонщикам прихо­дилось писать записки для группы сопровождения и выбрасывать их на дорогу. И все-таки, несмотря на трудности, солнцемобиль неуклон­но продвигался к цели, находясь в пути 11 часов ежедневно. Средняя скорость машины составила 25 ки­лометров в час. Так, медленно, но верно, солнцемобиль преодолел самый трудный участок дороги - Большой Водораздельный хребет, и на исходе контрольных двадцатых суток торжественно финишировал в Сиднее. Здесь путешественники вылили в Тихий океан воду, взятую ими в начале пути из Индийского. «Солнечная энергия соединила два океана», - заявили они многочис­ленным присутствовавшим журна­листам.

Двумя годами позже в швейцар­ских Альпах состоялось необычное авторалли. На старт вышли 58 авто­мобилей, двигатели которых приво­дились в движение энергией, полу­ченной от солнечных батарей. За пять дней экипажам самых причуд­ливых конструкций предстояло пре­одолеть 368 километров по горным альпийским трассам - от Боденского до Женевского озера. Луч­ший результат показал солнцемо­биль «Солнечная серебряная стре­ла», построенный совместно запад­ногерманской фирмой «Мерседес-Бенц» и швейцарской «Альфа-Реал». По внешнему виду автомо­биль-победитель больше всего на­поминает большого жука с широ­кими крыльями. В этих крыльях расположены 432 солнечных эле­мента, которые питают энергией серебряно-цинковую аккумуляторную батарею. От этой батареи энергия поступает к двум электро­двигателям, вращающим колеса автомобиля. Но так происходит только в пасмурную погоду или во время движения в тоннеле. Когда же светит солнце, ток от солнечных элементов поступает прямо к эле­ктродвигателям. Временами ско­рость победителя достигала 80 ки­лометров в час.

Японский моряк Кэнити Хориэ стал первым человеком, который в одиночку пересек Тихий океан на судне с солнечной энергетической установкой. Других источников энергии на лодке не было. Солнце помогло отважному мореплавателю преодолеть 6000 километров от Га­вайских островов до Японии.

Американец Л. Мауро скон­струировал и построил самолет, на поверхности крыльев которого рас­положена батарея из 500 солнечных элементов. Вырабатываемая этой батареей электроэнергия приводит в движение электромотор мощ­ностью в два с половиной кило­ватта, с помощью которого уда­лось все-таки совершить, хотя и не очень продолжительный, полет. Ан­гличанин Алан Фридмэн сконструи­ровал велосипед без педалей. Он приводится в движение электри­чеством, поступающим из аккуму­ляторов, заряжаемых установлен­ной на руле солнечной батареей. Запасенной в аккумуляторе «сол­нечной» электроэнергии хватает на то, чтобы проехать около 50 кило­метров со скоростью 25 километ­ров в час. Существуют проекты солнечных воздушных шаров и дирижаблей. Все эти проекты от­носятся пока к технической экзо­тике - слишком мала плотность солнечной энергии, слишком велики необходимые площади солнечных батарей, которые могли бы дать достаточное для решения солидных задач количество энергии.

А почему не подняться чуть-чуть ближе к Солнцу? Ведь там, в ближнем космосе, плотность сол­нечной энергии в 10-15 раз выше! Потом, там не бывает непогоды и облаков. Идею создания орбиталь­ных солнечных электростанций вы­двинул еще К.Э.Циолковский. В 1929 году молодой инженер, бу­дущий академик В.П.Глушко, предложил проект гелиоракетоплана, использующего большие количества солнечной энергии. В 1948 году профессор Г.И.Бабат рассмотрел возможность передачи энергии, полученной в космосе, на Землю с помощью пучка сверх­высокочастотного излучения. В 1960 году инженер Н.А.Варваров предложил использовать космичес­кую солнечную электростанцию для электроснабжения Земли.

Грандиозные успехи космонав­тики перевели эти идеи из ранга научно-фантастических в рамки кон­кретных инженерных разработок. На Международном конгрессе астронавтов в 1968 году делегаты многих стран рассматривали уже вполне серьезный проект солнеч­ной космической электростанции, подкрепленный детальными эконо­мическими расчетами. Сразу же появились горячие сторонники этой идеи и не менее непримиримые противники.

Большинство исследователей считают, что будущие космические энергогиганты будут создаваться на базе солнечных батарей. Если ис­пользовать существующие их типы, то площадь для получения мощ­ности 5 миллиардов киловатт долж­на составить 60 квадратных кило­метров, а масса вместе с несущими конструкциями - около 12 тысяч тонн. Если же рассчитывать на сол­нечные батареи будущего, значи­тельно более легкие и эффектив­ные, площадь батарей может быть сокращена раз в десять, а масса и того больше.

Можно построить на орбите и обычную тепловую электростан­цию, в которой турбину будет вра­щать поток инертного газа, сильно разогретого концентрированными солнечными лучами. Разработан проект такой солнечной космичес­кой электростанции, состоящей из 16 блоков по 500 тысяч киловатт каждый. Казалось бы, такие махины, как турбины и генераторы, невы­годно поднимать на орбиту, да кроме того, нужно построить и огромный параболический кон­центратор солнечной энергии, на­гревающей рабочее тело турбины. Но оказалось, что удельная масса такой электростанции (то есть мас­са, приходящаяся на 1 киловатт произведенной мощности) полу­чается вдвое меньшей, чем для станции с существующими солнеч­ными батареями. Так что тепловая электростанция в космосе - не столь уж нерациональная идея. Правда, ожидать существенного снижения удельной массы тепловой электростанции не приходится, а прогресс в производстве солнечных батарей обещает снижение их удельной массы в сотни раз. Если это произойдет, то преимущество будет, конечно, за батареями.

Передача электроэнергии из космоса на Землю может осуществляться пучком сверхвысоко­частотного излучения. Для этого в космосе нужно соорудить пере­дающую антенну, а на Земле - приемную. Кроме того, нужно вы­вести в космос устройства, пре­образующие постоянный ток, рож­денный солнечной батареей, в сверхвысокочастотное излучение. Диаметр передающей антенны дол­жен быть около километра, а масса, вместе с преобразовательными устройствами, несколько тысяч тонн. Приемная антенна должна быть значительно больше (ведь энергетический пучок обязательно рассеется атмосферой). Ее площадь должна составить около 300 квад­ратных километров. Но земные проблемы решаются легче.

Для строительства космической солнечной электростанции потре­буется создать целый космический флот из сотен ракет и кораблей многоразового использования. Ведь на орбиту придется вывести тысячи тонн полезного груза. Кроме того, необходима будет и малая космическая эскадра, которой будут пользоваться космонавты-мон­тажники, ремонтники, энергетики.

Первый опыт, который очень пригодится будущим монтажникам космически» солнечных электро­станций, приобрели советские кос­монавты.

Космическая станция «Салют-7» находилась на орбите уже немало дней, когда стало ясно, что для проведения многочисленных экспе­риментов, задуманных учеными, мощности корабельной электро­станции-солнечных батарей-мо­жет не хватить. В конструкции «Салют-7» возможность установки дополнительных батарей была предусмотрена. Оставалось только доставить на орбиту солнечные модули и укрепить их в нужном месте, то есть провести тонкие монтажные операции в открытом космосе. С этой сложнейшей зада­чей советские космонавты блестяще справились.

Две новые панели солнечных ба­тарей были доставлены на орбиту

на борту спутника «Космос-1443» весной 1983 года. Экипаж «Сою­за Т-9» - космонавты В. Ляхов и А. Александров - перенес их на борт «Салюта-7». Теперь пред­стояла работа в открытом космосе.

Дополнительные солнечные ба­тареи были установлены 1 и 3 нояб­ря 1983 года. Четкую и методичную работу космонавтов в невероятно трудных условиях открытого космо­са видели миллионы телезрителей. Сложнейшая монтажная операция была проведена великолепно. Но­вые модули увеличили производ­ство электроэнергии более чем в полтора раза.

Но и этого оказалось недоста­точно. Представители следующего экипажа «Салюта-7»-Л. Кизим и В. Соловьев (вместе с ними в кос­мосе находился врач О. Атьков)- 18 мая 1984 года установили на крыльях станции дополнительные солнечные батареи.

Будущим проектировщикам космических электростанций очень важно знать, как необычные усло­вия космоса - почти абсолютный вакуум, невероятный холод косми­ческого пространства, жесткая солнечная радиация, бомбардиров­ка микрометеоритами и так да­лее-влияют на состояние мате­риалов, из которых сделаны сол­нечные батареи. На многие вопросы получают они ответы, изучив образ­цы, доставленные на Землю с «Салюта-7». Уже более двух лет работали батареи этого корабля в космосе, когда С. Савицкая - первая в мире женщина, дважды побывавшая в космосе и совершив­шая выход в открытый космос, - с помощью универсального инструмента отделила, кусочки солнечных панелей. Теперь их изучают ученые разных специальностей, чтобы определить, как долго могут рабо­тать в космосебез замены.

Космическая тепловая станция

Технические трудности, которые будет необходимо преодолеть конструкторам космических энерго­станций, колоссальны, но прин­ципиально разрешимы. Другое дело - экономика таких сооруже­ний. Кое-какие оценки производят уже сейчас, хотя экономические расчеты космических энергостан­ций могут быть сделаны лишь весь­ма приближенно. Сооружение кос­мической электростанции будет вы­годным лишь тогда, когда стои­мость киловатт-часа выработанной энергии составит примерно такую же величину, как стоимость энер­гии, выработанной на Земле. По оценкам американских специалис­тов, для выполнения этого усло­вия стоимость солнечной электро­станции в космосе должна быть не более 8 миллиардов долларов. Этой величины можно достичь, если в 10 раз снизить (по сравне­нию с существующей) стоимость одного киловатта мощности, выра­батываемой солнечными батареями, и во столько же раз - стоимость доставки полезного груза на орби­ту. А это - невероятно трудные задачи. Видимо, в ближайшие деся­тилетия мы вряд ли сможем ис­пользовать космическую электро­энергию.

Но в списке резервов челове­чества этот источник энергии обяза­тельно будет значиться на одном из первых мест.

Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный педагогический университет имени Максима Танка»

Кафедра общей и теоретической физики

Курсовая работа по общей физике

Солнечная энергия и перспективы ее использования

Студентки 321 группы

физического факультета

Лешкевич Светлана Валерьевна

Научный руководитель:

Федорков Чеслав Михайлович

Минск, 2009


Введение

1. Общие сведения о солнце

2. Солнце – источник энергии

2.1 Исследование солнечной энергии

2.2 Потенциал солнечной энергии

3. Использование солнечной энергии

3.1 Пассивное использование солнечной энергии

3.2 Активное использование солнечной энергии

3.2.1 Солнечные коллекторы и их виды

3.2.2 Солнечные системы

3.2.3 Солнечные тепловые электростанции

3.3 Фотоэлектрические системы

4. Солнечная архитектура

Заключение

Список использованных источников


Введение

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной.

1. Общие сведения о Солнце

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

Характеристики Солнца

1. Масса MS ~2*1023 кг

2. RS ~629 тыс. км

3. V= 1,41*1027 м3, что почти в 1300 тыс. раз превосходит объем Земли,

4. средняя плотность 1,41*103 кг/м3 ,

5. светимость LS =3,86*1023 кВт,

6. эффективная температура поверхности (фотосфера) 5780 К,

7. период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,

8. ускорение свободного падения 274 м/с2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Строение Солнца

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы “печка” внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.


Рис. 1 Строение Солнца

На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.

Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое «зерно» размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области - солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть «окрашенной сферой». Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы - корона.

2. Солнце – источник энергии

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% - на процесс образования фотосинтеза в природе.

2.1 Исследование солнечной энергии

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, - водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% - более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6x1011 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0º C до точки кипения 1000 м3 воды.

2.2 Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

3. Использование солнечной энергии

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца. К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических систем - это системы, которые преобразовывают солнечную радиацию непосредственно в электричество.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца «управляет» погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, «питая» гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающих благодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергии.

Энергия – это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества.

3.1 Пассивное использование солнечной энергии

солнечная энергия тепловая электростанция

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.

В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные.

3.2 Активное использование солнечной энергии

Активное использование солнечной энергии осуществляется с помощью солнечных коллекторов и солнечных систем.

3.2.1 Солнечные коллекторы и их виды

В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.

Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской «Carnegie Steel Company» изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему. К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов.

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.

Интегрированный коллектор

Простейший вид солнечного коллектора - это «емкостной» или «термосифонный коллектор», получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится «одноразовая» порция воды. Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор - недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами.

Плоские коллекторы

Плоские коллекторы - самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери.

Плоские коллекторы делятся на жидкостные и воздушные. Оба вида коллекторов бывают остекленными или неостекленными.

Солнечные трубчатые вакуумированные коллекторы

Традиционные простые плоские солнечные коллекторы были спроектированы для применения в регионах с теплым солнечным климатом. Они резко теряют в эффективности в неблагоприятные дни - в холодную, облачную и ветреную погоду. Более того, вызванные погодными условиями конденсация и влажность приводят к преждевременному износу внутренних материалов, а это, в свою очередь, - к ухудшению эксплуатационных качеств системы и ее поломкам. Эти недостатки устраняются путем использования вакуумированных коллекторов.

Вакуумированные коллекторы нагревают воду для бытового применения там, где нужна вода более высокой температуры. Солнечная радиация проходит сквозь наружную стеклянную трубку, попадает на трубку-поглотитель и превращается в тепло. Оно передается жидкости, протекающей по трубке. Коллектор состоит из нескольких рядов параллельных стеклянных трубок, к каждой из которых прикреплен трубчатый поглотитель (вместо пластины-поглотителя в плоских коллекторах) с селективным покрытием. Нагретая жидкость циркулирует через теплообменник и отдает тепло воде, содержащейся в баке-накопителе.

Вакуум в стеклянной трубке - лучшая из возможных теплоизоляций для коллектора - снижает потери тепла и защищает поглотитель и теплоотводящую трубку от неблагоприятных внешних воздействий. Результат - отличные рабочие характеристики, превосходящие любой другой вид солнечного коллектора.

Фокусирующие коллекторы

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется «теплоприемник». Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах.

Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи (для приготовления еды) и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника.

Солнечные печи

Они дешевы и просты в изготовлении. Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом (например, фольгой), накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения.

Бывают ящичные и зеркальные (с отражателем) солнечные печи.

Солнечные дистилляторы

Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор - размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды.

3.2.2 Солнечные системы

Солнечные системы горячего водоснабжения

Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды с помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

Термосифонные солнечные системы

Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:

· плоский коллектор (абсорбер);

· трубопроводы;

· Бак-накопитель для горячей воды (бойлер).

Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы.

Такие установки популярны в субтропических и тропических областях.

Солнечные системы подогрева воды

Чаще всего используются для обогрева бассейнов. Несмотря на то, что стоимость такой установки меняется в зависимости от размера бассейна и других специфических условий, если солнечные системы устанавливаются с целью снижения или отказа от потребления топлива или электроэнергии, они за два-четыре года окупаются за счет экономии энергии. Более того, обогрев бассейна позволяет на несколько недель продлить купальный сезон без дополнительных затрат.

В большинстве зданий не составляет труда устроить солнечный обогреватель для бассейна. Он может сводиться к простому черному шлангу, по которому в бассейн подается вода. Для открытых бассейнов нужно всего лишь установить абсорбер. Закрытые бассейны требуют установки стандартных коллекторов, чтобы обеспечить теплую воду и зимой.

Сезонное аккумулирование тепла

Есть и такие установки, которые позволяют зимой использовать тепло, накопленное летом солнечными коллекторами и сохраненное при помощи больших аккумулирующих баков (сезонное аккумулирование). Здесь проблема заключается в том, что количество жидкости, необходимое для обогрева дома, сопоставимо с объемом самого дома. Вдобавок, хранилище тепла необходимо очень хорошо изолировать. Чтобы обычный домашний бак-накопитель сохранил большую часть тепла в течение полугода, его пришлось бы обернуть в слой изоляции толщиной 4 метра. Поэтому выгодно делать объем накопительной емкости очень большим. Из-за этого снижается отношение площади поверхности к объему.

Крупные солнечные установки центрального отопления используются в Дании, Швеции, Швейцарии, Франции и США. Солнечные модули устанавливают прямо на земле. Без хранилища такая солнечная отопительная установка может покрыть около 5% годовой потребности в тепле, так как установка не должна вырабатывать больше, чем минимальное количество потребляемого тепла, включая потери в районной системе отопления (до 20% при передаче). Если есть хранение дневного тепла в ночное время, то солнечная отопительная установка может покрывать 10-12% потребности в тепле, включая потери при передаче, а с сезонным хранением тепла - до 100%. Существует также возможность комбинирования районного отопления с индивидуальными солнечными коллекторами. Районную систему отопления можно отключить на лето, когда горячее водоснабжение обеспечивается Солнцем, и нет потребности в отоплении.

Солнечная энергия в сочетании с другими возобновляемыми источниками.

Хороший результат приносит комбинирование различных возобновляемых источников энергии, например, тепло Солнца в сочетании с сезонным аккумулированием тепла в виде биомассы. Либо, если оставшаяся потребность в энергии очень низка, можно использовать жидкие или газообразные виды биотоплива в сочетании с эффективными котлами в дополнение к солнечному отоплению.

Интересную комбинацию представляют собой солнечное отопление и котлы, работающие на твердой биомассе. Этим же решается и проблема сезонного хранения солнечной энергии. Использование биомассы летом не является оптимальным решением, так как КПД котлов при частичной загрузке невысок, к тому же относительно высоки потери в трубах - а в небольших системах сжигание древесины летом может причинять неудобство. В таких случаях все 100% тепловой нагрузки летом может обеспечиваться за счет солнечного отопления. Зимой, когда количество солнечной энергии незначительно, практически все тепло вырабатывается за счет сжигания биомассы.

В Центральной Европе накоплен большой опыт комбинирования солнечного отопления и сжигания биомассы для производства тепла. Обычно около 20-30% общей тепловой нагрузки покрывает солнечная система, а главная нагрузка (70-80%) обеспечивается биомассой. Это сочетание может применяться и в индивидуальных жилых домах, и в системах центрального (районного) отопления. В условиях Центральной Европы около 10 м3 биомассы (например, дров) достаточно для отопления частного дома, причем солнечная установка помогает сэкономить до 3 м3 дров в год.

3.2.3 Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

Солнечные концентраторы

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду.

Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма «Luz Corp.» установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.

Существуют следующие виды солнечных концентраторов:

1. Солнечные параболические концентраторы

2. Солнечная установка тарельчатого типа

3. Солнечные электростанции башенного типа с центральным приемником.

Солнечные пруды

Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.

Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли - на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный «рассол» используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.

3.3 Фотоэлектрические системы

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более.

Солнечные фотоэлектрические системы просты в обращении и не имеют движущихся механизмов, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. В основе действия фотоэлементов лежит физический принцип, при котором электрический ток возникает под воздействием света между двумя полупроводниками с различными электрическими свойствами, находящимися в контакте друг с другом. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль. Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный, а не переменный ток. Он используется во многих простых устройствах, питающихся от батарей. Переменный же ток, напротив, меняет свое направление через регулярные промежутки времени. Именно этот тип электричества поставляют энергопроизводители, он используется для большинства современных приборов и электронных устройств. В простейших системах постоянный ток фотоэлектрических модулей используется напрямую. Там же, где нужен переменный ток, к системе необходимо добавить инвертор, который преобразует постоянный ток в переменный.

В ближайшие десятилетия значительная часть мирового населения познакомится с фотоэлектрическими системами. Благодаря им исчезнет традиционная необходимость сооружения крупных дорогостоящих электростанций и распределительных систем. По мере того, как стоимость фотоэлементов будет снижаться, а технология - совершенствоваться, откроется несколько потенциально огромных рынков фотоэлементов. К примеру, фотоэлементы, встроенные в стройматериалы, будут осуществлять вентиляцию и освещение домов. Потребительские товары - от ручного инструмента до автомобилей - выиграют в качестве от использования компонентов, содержащих фотоэлектрические компоненты. Коммунальные предприятия также смогут находить все новые способы применения фотоэлементов для удовлетворения потребностей населения.

К простейшим фотоэлектрическим системам относятся:

· солнечные насосы - фотоэлектрические насосные установки являются долгожданной альтернативой дизельным генераторам и ручным насосам. Они качают воду именно тогда, когда она особенно нужна - в ясный солнечный день. Солнечные насосы просто устанавливать и эксплуатировать. Небольшой насос может установить один человек за пару часов, причем ни опыт, ни специальное оборудование для этого не нужны.

· Фотоэлектрические системы с аккумулятором - аккумулятор заряжается от солнечного генератора, запасает энергию и делает ее доступной в любое время. Даже в самых неблагоприятных условиях и в отдаленных пунктах фотоэлектрическая энергия, сохраняемая в аккумуляторах, может питать необходимое оборудование. Благодаря аккумулированию электроэнергии фотоэлектрические системы служат надежным источником электропитания днем и ночью, в любую погоду. Фотоэлектрические системы, оснащенные аккумулятором, во всем мире питают осветительные приборы, сенсоры, звукозаписывающее оборудование, бытовые приборы, телефоны, телевизоры и электроинструменты.

· фотоэлектрические системы с генераторами - когда электричество нужно непрерывно или возникают периоды, когда его нужно больше, чем может выработать одна только фотобатарея, ее может эффективно дополнить генератор. В дневные часы фотоэлектрические модули удовлетворяют дневную потребность в энергии и заряжают аккумулятор. Когда аккумулятор разряжается, двигатель-генератор включается и работает до тех пор, пока батареи не подзарядятся. В некоторых системах генератор восполняет недостаток энергии, когда потребление электричества превышает общую мощность аккумуляторов. Двигатель-генератор вырабатывает электричество в любое время суток. Таким образом, он представляет собой прекрасный резервный источник питания для дублирования ночью или в ненастный день фотоэлектрических модулей, зависящих от прихотей погоды. С другой стороны, фотоэлектрический модуль работает бесшумно, не требует ухода и не выбрасывает в атмосферу загрязняющие вещества. Комбинированное использование фотоэлементов и генераторов способно снизить первоначальную стоимость системы. Если резервной установки нет, фотоэлектрические модули и аккумуляторы должны быть достаточно большими, чтобы обеспечивать питание ночью.

· фотоэлектрические системы, присоединённые к сети - в условиях централизованного энергоснабжения, подключенная к сети фотоэлектрическая система может обеспечивать часть необходимой нагрузки, другая часть при этом поступает из сети. В этом случае аккумулятор не используется. Тысячи домовладельцев в разных странах мира используют такие системы. Энергия фотоэлементов либо используется на месте, либо подается в сеть. Когда же владельцу системы нужно больше электричества, чем она вырабатывает - например, вечером, то возросшая потребность автоматически удовлетворяется за счет сети. Когда же система вырабатывает больше электричества, чем может потребить хозяйство, излишек отправляется (продается) в сеть. Таким образом, коммунальная сеть выступает в роли резерва для фотоэлектрической системы, как аккумулятор - для автономной установки.

· промышленные фотоэлектрические установки - фотоэлектрические станции работают бесшумно, не потребляют ископаемого топлива и не загрязняют воздух и воду. К сожалению, фотоэлектрические станции пока еще не очень динамично входят в арсенал коммунальных сетей, что можно объяснить их особенностями. При современном методе подсчета стоимости энергии, солнечное электричество все еще значительно дороже, чем продукция традиционных электростанций. К тому же фотоэлектрические системы вырабатывают энергию только в светлое время суток, и их производительность зависит от погоды.

4. Солнечная архитектура

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.

Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.

Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.

Во время проектирования здания также следует учитывать применение активных солнечных систем, таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем (в этом случае можно использовать один солнечный коллектор на два помещения) и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность.

Заключение

В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.

В настоящее время разрабатываются новые космические проекты, имеющие целью исследование Солнца, проводятся наблюдения, в которых принимают участие десятки стран. Данные о процессах, происходящих на Солнце, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершина и в глубинах океанов.

Большое внимание нужно уделить и тому, что производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.

Сейчас учёные исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии.


Список использованных источников

Литература

1. Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1988 г., с. 44-57

2. Жуков Г.Ф. Общая теория энергии.//М: 1995., с. 11-25

3. Дементьев Б.А. Ядерные энергетические реакторы. М., 1984, с. 106-111

4. Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985, с. 69-93

5. Энциклопедический словарь юного астронома, М.: Педагогика,1980 г., с. 11-23

6. Видяпин В.И., Журавлева Г.П. Физика. Общая теория.//М: 2005, с. 166-174

7. Дагаев М. М. Астрофизика.//М:1987, с. 55-61

8. Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 1966, с. 163-194

9. Илларионов А. Г. Природа энергетики.//М: 1975., с. 98-105

Жизнь современного человека просто немыслима без энергии. Отключение электроэнергии представляется катастрофой, человек уже не мыслит жизнь без транспорта, а приготовление, к примеру, пищи на костре, а не на удобной газовой или электрической плите - это уже из разряда хобби.

До сих пор мы используем для выработки энергии органическое топливо (нефть, газ, уголь). Но их запасы на нашей планете ограничены, и не сегодня-завтра наступит день, когда они иссякнут. Что же делать? Ответ уже есть - искать другие источники энергии, нетрадиционные, альтернативные, запас которых просто неисчерпаем.

К таким альтернативным источникам энергии относятся солнце и ветер.

Использование солнечной энергии

Солнце - мощнейший поставщик энергии. Что-то мы используем в силу наших физиологических особенностей. Но миллионы, миллиарды киловатт уходят впустую и исчезают с наступлением темноты. Каждую секунду Солнце дарит Земле 80 тысяч миллиардов киловатт. Это в несколько раз больше, чем вырабатывают все электростанции мира.

Только представьте, какие выгоды принесет человечеству использование солнечной энергии:

. Бесконечность по времени . Ученые предсказывают, что Солнце не погаснет еще в течение нескольких миллиардов лет. А это значит, что хватит и на наш век и для наших дальних потомков.

. География . На нашей планете нет мест, где не светило бы солнце. Где-то ярче, где-то тусклее, но Солнце есть везде. А значит не нужно будет окутывать Землю бесконечной паутиной проводов, пытаясь доставить электроэнергию в отдаленные уголки планеты.

. Количество . Энергии солнца хватит на всех. Даже если кто-то начнет безразмерно запасать такую энергию впрок, это ничего не изменит. Хватит и чтобы батарейки зарядить, и на пляже позагорать.

. Экономическая выгода . Уже не нужно будет тратиться на покупку дров, угля, бензина. Бесплатный солнечный свет будет отвечать за работу водоснабжения и автомобиля, кондиционера и телевизора, холодильника и компьютера.

. Экологически выгодно . Уйдет в прошлое тотальная вырубка лесов, не нужно будет топить печи, строить очередные "чернобыли" и "фукусимы", жечь мазут и нефть. Зачем прикладывать столько сил к уничтожению природы, когда в небе есть прекрасный и неиссякаемый источник энергии - Солнце.

К счастью, это не мечты. По оценкам ученых, уже к 2020 году 15% электроэнергии в Европе будет обеспечиваться за счет солнечного света. И это только начало.

Где используют солнечную энергию

. Солнечные батареи . Батареи, установленные на крыше дома, уже никого не удивляют. Поглощая энергию солнца, они преобразуют ее в электрическую. В Калифорнии, например, любой проект нового дома подразумевает обязательное использование солнечной батареи. А в Голландии город Херхюговард называют "городом Солнца", потому что здесь все дома оснащены солнечными батареями.

. Транспорт .

Уже сейчас все космические корабли во время автономного полета обеспечивают себя электричеством за счет энергии солнца.

Автомобили на солнечных батареях. Первая модель такого автомобиля была представлена еще в 1955 году. А уже в 2006 году французская компания Venturi наладила серийный выпуск "солнечных" автомобилей. Характеристики его пока скромны: всего 110 километров автономного хода и скорость не выше 120 км/ч. Но практически все мировые лидеры автомобильной промышленности разрабатывают свои версии экологически чистых авто.

. Солнечные электростанции .

. Гаджеты . Уже сейчас есть зарядки для многих устройств, которые работают от солнца.

Виды солнечной энергии (солнечные электростанции)

В настоящее время разработано несколько видов солнечных электростанций (СЭС):

. Башенные . Принцип работы прост. Огромное зеркало (гелиостат) поворачивается вслед за солнцем и направляет солнечные лучи на теплоприемник, заполненный водой. Далее все происходит как в обычной ТЭЦ: вода закипает, превращается в пар. Пар крутит турбину, которая задействует генератор. Последний и вырабатывает электричество.

. Тарельчатые . Принцип работы схож с башенными. Отличие заключается в самой конструкции. Во-первых, используется не одно зеркало, а несколько круглых, похожих на огромные тарелки. Зеркала устанавливают радиально, вокруг приемника.

Каждая тарельчатая СЭС может иметь сразу несколько подобных модулей.

. Фотовольтаические (использующие фотобатареи).

. СЭС с параболоцилиндрическим концентратором . Огромное зеркало в форме цилиндра, где в фокусе параболы установлена трубка с теплоносителем (чаще всего используют масло). Масло разогревается до нужной температуры и отдает тепло воде.

. Солнечно-вакуумные . Участок земли закрывают стеклянной крышей. Воздух и почва под ней нагреваются сильнее. Специальная турбина гонит теплый воздух к приемной башне, возле которой установлен электрогенератор. Электричество вырабатывается за счет разницы температур.

Использование энергии ветра

Еще один вид альтернативного и возобновляемого источника энергии - ветер. Чем сильнее ветер, тем большее количество кинетической энергии он вырабатывает. А кинетическую всегда можно преобразовать в механическую или электрическую энергию.

Механическую энергию, получаемую за счет ветра, используют уже давно. Например, при помоле зерна (знаменитые ветряные мельницы) или перекачивания воды.

Энергию ветра используют также:

В ветряных установках, которые вырабатывают электричество. Лопасти заряжают аккумулятор, от которого ток подается в преобразователи. Здесь постоянный ток преобразуется в переменный.

Транспорт. Уже сейчас есть автомобиль, который едет за счет энергии ветра. Специальная ветровая установка (кайт) позволяет двигаться и водным судам.

Виды ветряной энергии (ветряные электростанции)

. Наземные - самый распространенный вид. Такие ВЭС устанавливают на холмах или возвышенностях.

. Шельфовые . Их строят на мелководье, в значительном удалении от берегов. Электричество поступает на сушу по подводным кабелям.

. Прибрежные - устанавливают на некотором удалении от моря или океана. Прибрежные ВЭС используют силу бризов.

. Плавающие . Первый плавающий ветрогенератор был установлен в 2008 году недалеко от берегов Италии. Генераторы устанавливают на специальных платформах.

. Парящие ВЭС размещают на высоте на специальных подушках, выполненных из невоспламеняемых материалов и наполненных гелием. Электричество на землю подается по канатам.

Перспективы и развитие

Самые серьезные перспективные планы по использованию энергии солнца ставит перед собой Китай, который к 2020 году планирует стать мировым лидером в этой области. Страны ЕЭС разрабатывают концепцию, которая позволит получать до 20% электроэнергии из альтернативных источников. Американское Министерство энергетики называет меньшую цифру - к 2035 году до 14%. Есть СЭС и в России. Одна из самых мощных установлена в Кисловодске.

Что касается использования энергии ветра, то приведем некоторые цифры. Европейская Ассоциация ветровой энергетики опубликовала данные, которые показывают, что ветроэнергетические установки обеспечивают электричеством многие страны мира. Так, в Дании, за счет таких установок получают 20% потребляемой электроэнергии, в Португалии и Испании - 11%, в Ирландии - 9%, в Германии - 7%.

В настоящее время ВЭС установлены более чем в 50 странах мира, а их мощность растет из года в год.

Главная > Реферат

Муниципальное общеобразовательное учреждение «Лицей №43»

ИСПОЛЬЗОВАНИЕ
СОЛНЕЧНОЙ ЭНЕРГИИ

Выполнил: ученик 8А классаНикулин АлексейПроверила: Власкина Мария Николаевна

Саранск, 2008

ВВЕДЕНИЕ

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

СКОЛЬКО СОЛНЕЧНОЙ ЭНЕРГИИ ПОПАДАЕТ НА ЗЕМЛЮ?

Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли.

ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

В большинстве стран мира количество солнечной энергии, попадающей на крыши и стены зданий, намного превышает годовое потребление энергии жителями этих домов. Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания и/или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Кроме этого, существует другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца.Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, "питая" гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающихблагодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергии.

ПАССИВНОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.

ИСТОРИЯ

Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в Соединенных Штатах здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии, и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.

ПАССИВНЫЕ СОЛНЕЧНЫЕ СИСТЕМЫ

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов.

СОЛНЕЧНАЯ АРХИТЕКТУРА И АКТИВНЫЕ СОЛНЕЧНЫЕ
СИСТЕМЫ

Во время проектирования здания также следует учитывать применение активных солнечных систем (см. ниже), таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Важно помнить, что близкое расположение ванной комнаты и кухни позволяет сэкономить на установке активных солнечных систем (в этом случае можно использовать один солнечный коллектор на два помещения) и минимизировать потери энергии на транспортировку. Главным критерием при выборе оборудования является его эффективность.

РЕЗЮМЕ

Пассивное использование солнечного света обеспечивает примерно 15% потребности обогрева помещений в стандартном здании и является важным источником энергосбережения. При проектировании здания необходимо учитывать принципы пассивного солнечного строительства для максимального использования солнечной энергии. Эти принципы можно применять везде и практически без дополнительных затрат.

СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ

С древнейших времен человек использует энергию Солнца для нагрева воды. В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.Для типичного жилого дома или квартиры в Европе и Северной Америке нагрев воды - это второй по энергоемкости домашний процесс. Для ряда домов он даже является самым энергоемким. Использование энергии Солнца способно снизить стоимость бытового нагрева воды на 70%. Коллектор предварительно подогревает воду, которая затем подается на традиционную колонку или бойлер, где вода нагревается до нужной температуры. Это приводит к значительной экономии средств. Такую систему легко установить, она почти не требует ухода.В наши дни солнечные водонагревательные системы используются в частных домах, многоквартирных зданиях, школах, автомойках, больницах, ресторанах, в сельском хозяйстве и промышленности. У всех перечисленных заведений есть нечто общее: в них используется горячая вода. Владельцы домов и руководители предприятий уже смогли убедиться в том, что солнечные системы для нагрева воды являются экономически выгодными и способны удовлетворить потребность в горячей воде в любом регионе мира.

ИСТОРИЯ

Люди нагревали воду при помощи Солнца с давних времен, до того, как ископаемое топливо заняло лидирующее место в мировой энергетике. Принципы солнечного отопления известны на протяжении тысячелетий. Покрашенная в черный цвет поверхность сильно нагревается на солнце, тогда как светлые поверхности нагреваются меньше, белые же меньше всех остальных. Это свойство используется в солнечных коллекторах - наиболее известных приспособлениях, непосредственно использующих энергию Солнца. Коллекторы были разработаны около двухсот лет назад. Самый известный из них - плоский коллектор - был изготовлен в 1767 году швейцарским ученым по имени Гораций де Соссюр. Позднее им воспользовался для приготовления пищи сэр Джон Гершель во время своей экспедиции в Южную Африку в 30-х годах ХIX века.Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской "Carnegie Steel Company" изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему (см. ниже). К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов. Введенное в США во время второй мировой войны нормирование меди привело к резкому падению рынка солнечных обогревателей.До всемирного нефтяного кризиса 1973 года эти устройства пребывали в забвении. Однако кризис пробудил новый интерес к альтернативным источникам энергии. В результате возрос спрос и на солнечную энергию. Многие страны живо интересуются развитием этой области. Эффективность систем солнечного отопления с 1970-х постоянно возрастает благодаря использованию для покрытия коллекторов закаленного стекла с пониженным содержанием железа (оно пропускает больше солнечной энергии, чем обычное стекло), улучшенной теплоизоляции и прочному селективному покрытию.

ТИПЫ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов. Их можно разделить на несколько категорий. К примеру, различают несколько видов коллекторов в соответствии с температурой, которую они дают:Низкотемпературные коллекторы производят низкопотенциальное тепло, ниже 50 градусов Цельсия. Используются они для подогрева воды в бассейнах и в других случаях, когда требуется не слишком горячая вода.Среднетемпературные коллекторы производят высоко- и среднепотенциальное тепло (выше 50 С, обычно 60-80 С). Обычно это остекленные плоские коллекторы, в которых теплопередача совершается посредством жидкости, либо коллекторы-концентраторы, в которых тепло концентрируется. Представителем последних является коллектор вакуумированный трубчатый, который часто используется для нагрева воды в жилом секторе.Высокотемпературные коллекторы представляют собой параболические тарелки и используются в основном электрогенерирующими предприятиями для производства электричества для электросетей.

ПРИНЦИП ДЕЙСТВИЯ

Воздушные солнечные коллекторы можно разделить на группы по способу циркуляции воздуха. В простейшем из них воздух проходит через коллектор под поглотителем. Этот вид коллектора пригоден только для подъема температуры на 3-5 оC из-за высоких потерь тепла на поверхности коллектора через конвекцию и излучение. Эти потери можно значительно снизить, накрыв поглотитель прозрачным материалом с низкой проводимостью инфракрасного излучения. В таком коллекторе поток воздуха возникает либо под поглотителем, либо между поглотителем и прозрачным покрытием. Благодаря прозрачной крышке излучение тепла с поглотителя снижается незначительно, но из-за снижения конвективных теплопотерь можно достичь подъема температуры на 20-50 оC в зависимости от количества солнечной радиации и интенсивности воздушного потока. Можно добиться дальнейшего снижения тепловых потерь, проведя воздушный поток и над поглотителем и под ним, так как при этом удваивается площадь поверхности теплопередачи. Потери тепла из-за излучения при этом снизятся благодаря пониженной температуре поглотителя. Однако одновременно происходит и снижение поглотительной способности абсорбера из-за наслоения пыли, если воздушный поток проходит с обеих сторон поглотителя.Некоторые солнечные коллекторы позволяют снизить затраты за счет отказа от остекления, металлического ящика и теплоизоляции. Такой коллектор изготавливают из черных перфорированных металлических листов, которые позволяют достичь хорошего теплообмена. Солнце нагревает металл, а вентилятор втягивает нагретый воздух сквозь отверстия в металле. Такие коллекторы разного размера используются в частных домах. Типичный коллектор размером 2,4 на 0,8 метра может нагревать 0,002 м3 наружного воздуха в секунду. В солнечный зимний день воздух в коллекторе нагревается на 28 оC по сравнению с наружным. При этом улучшается качество воздуха внутри дома, так как коллектор непосредственно нагревает поступающий снаружи свежий воздух. Эти коллекторы достигли очень высокой эффективности - в некоторых случаях промышленного применения она превышает 70%. К тому же они не требуют остекления, изоляции и дешевы в изготовлении.

КОНЦЕНТРАТОРЫ

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется "теплоприемник". Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах.Концентраторы работают лучше всего тогда, когда они обращены прямо к Солнцу. Для этого используются следящие устройства, которые в течение дня поворачивают коллектор "лицом" к Солнцу. Одноосные следящие устройства поворачиваются с востока на запад; двуосные - с востока на запад и с севера на юг (чтобы следить за движением Солнца по небу в течение года). Концентраторы используются в основном в промышленных установках, так как они дороги, а следящие устройства нуждаются в постоянном уходе. В некоторых бытовых солнечных энергосистемах используются параболические концентраторы. Эти установки применяются для горячего водоснабжения, отопления и очистки воды. В бытовых системах применяются в основном одноосные следящие устройства - они дешевле и проще двуосных. Больше информации о концентраторах вы найдете в главе о солнечных тепловых электростанциях.

СОЛНЕЧНЫЕ ПЕЧИ И ДИСТИЛЛЯТОРЫ

Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи (для приготовления еды) и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника.Солнечные печи дешевы и просты в изготовлении. Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом (напимер, фольгой), накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения.Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор -- размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ

Солнечная энергия используется в следующих случаях:
    обеспечение горячей водой жилых домов, общественных зданий и промышленных предприятий; подогрев бассейнов; отопление помещений; сушка сельскохозяйственной продукции и др.; охлаждение и кондиционирование воздуха; очистка воды; приготовление пищи.
Применяемые технологии являются полностью разработанными, а первые две - в благоприятных условиях также экономически целесообразны. Смотрите ниже отдельную статью о коллекторах-концентраторах, которые с выгодой применяются для производства электроэнергии, особенно в регионах с большим количеством солнечной радиации (см. главу "Солнечные тепловые электростанции").

СОЛНЕЧНЫЕ СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

В настоящее время в нескольких миллионах жилых домов и предприятий пользуются солнечными системами нагрева воды. Это экономичный и надежный вид горячего водоснабжения. Нагрев воды для бытовых целей или отопления с помощью солнечной энергии - естественный и простой метод сбережения энергии и сохранения запасов ископаемого топлива. Хорошо спроектированная и правильно установленная солнечная система может, благодаря своему эстетичному виду, повысить стоимость дома. На новостройках такие системы включаются в общий план строительства, так что они практически незаметны со стороны, тогда как приспособить систему к старой постройке бывает зачастую нелегко.Солнечный коллектор позволяет своему владельцу сэкономить деньги, не оказывая при этом вредного влияния на окружающую среду. Использование одного солнечного коллектора позволяет сократить выбросы в атмосферу углекислого газа на одну-две тонны в год. Переход на солнечную энергию предотвращает выбросы и других загрязнителей, таких как двуокись серы, угарный газ и закись азота.Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования (см. главу ниже). В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды в помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

МОЖЕТ ЛИ СОЛНЕЧНЫЙ КОЛЛЕКТОР СОПЕРНИЧАТЬ
С ПРИВЫЧНЫМИ ОБОГРЕВАТЕЛЯМИ?

Стоимость полной системы горячего водоснабжения и отопления в разных странах значительно отличается: в Европе и США она составляет от 2000 до 4000 долларов США. Зависит она, в частности, и от требований к горячей воде, принятых в данной стране, и от климата. Начальное капиталовложение в такую систему, как правило, выше, чем требуется для установки электро- или газового обогревателя, но с учетом суммы всех расходов общие затраты за весь срок службы солнечных водонагревателей обычно ниже, чем для традиционных систем обогрева. Необходимо отметить, что основной срок окупаемости средств, вложенных в солнечную систему, зависит от цен на ископаемые энергоносители, ею замещаемые. В странах Европейского Союза срок окупаемости составляет обычно менее 10 лет. Ожидаемый срок службы солнечных обогревательных систем -- 20-30 лет.Важной характеристикой солнечной установки является ее энергетическая окупаемость - время, необходимое солнечной установке для выработки такого количества энергии, какое было бы затрачено на ее производство. В Северной Европе, на которую приходится меньше солнечной энергии, чем на другие обитаемые части света, солнечная установка для нагрева горячей воды окупает затраченную на нее энергию за 3-4 года.

ОТОПЛЕНИЕ ПОМЕЩЕНИЙ ПРИ ПОМОЩИ СОЛНЕЧНОЙ ЭНЕРГИИ

Выше мы говорили только о нагреве воды при помощи солнечной энергии. Активная солнечная отопительная установка может не только обеспечивать горячую воду, но и дополнительное отопление через систему центрального теплоснабжения. Для обеспечения производительности такой системы температура центрального отопления должна быть минимальной (желательно около 50 оC), также необходимо аккумулировать тепло для отопления. Удачным решением является комбинация солнечной отопительной установки с подогревом пола, при котором пол является тепловым аккумулятором.Солнечные установки для отопления помещений менее выгодны, чем водонагреватели как с экономической, так и с энергетической точки зрения, так как отопление редко требуется в летнее время. Но если летом нужно отапливать помещения (например, в горных районах), то тогда отопительные установки становятся выгодными. В Центральной Европе, например, около 20% общей тепловой нагрузки традиционного дома и приблизительно 50% дома с низким энергопотреблением можно обеспечивать за счет современной активной солнечной системы, оснащенной системой аккумулирования тепла. Оставшееся тепло должно обеспечиваться за счет дополнительной энергоустановки. Чтобы увеличить долю энергии, получаемой от Солнца, нужно увеличивать объем аккумулятора тепла.В Швейцарии конструируют солнечные установки для частных домов с хорошо утепленными накопительными баками вместительностью 5-30м 3 (так называемые, системы Дженни), но стоят они дорого, а хранение горячей воды часто непрактично. Солнечный компонент системы Дженни превышает 50% и даже достигает 100%.Если бы вышеописанная система полностью работала за счет солнечной водонагревательной установки, то понадобился бы коллектор площадью 25 м 3 и бак-накопитель объемом 85 м 3 с теплоизоляцией толщиной 100 см. Увеличение теплоемкости аккумулятора энергии приводит к значительному улучшению практических возможностей аккумулирования.Хотя отопление индивидуальных жилых домов при помощи солнечной энергии является технически возможным, более экономически выгодным на сегодняшний день является вложение средств в теплоизоляцию для сокращения потребности в отоплении.

ПРОМЫШЛЕННОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОГО ТЕПЛА

Не только домашние хозяйства, но и предприятия используют солнечные водонагреватели для предварительного подогрева воды перед последующим применением других методов, чтобы довести ее до кипения или испарения. Меньшая зависимость от колеблющихся цен на энергоносители - еще один фактор, делающий солнечные системы привлекательным вложением денег. Обычно, установка солнечного водонагревателя влечет за собой быструю и существенную экономию энергии. В зависимости от необходимого объема горячей воды и местного климата, предприятие может сэкономить 40-80% стоимости электричества и других энергоносителей. Например, ежедневная потребность в горячей воде в 24-этажном офисном здании Кук Джей в Сеуле (Южная Корея), обеспечивается более чем на 85% за счет солнечной водонагревательной системы. Система работает с 1984 года. Она оказалась настолько эффективной, что перекрыла плановые показатели и обеспечивает, сверх того, от 10 до 20 % годовой потребности в отоплении.Существует несколько разных видов солнечных водонагревательных систем. Однако, количество горячей воды, которое обычно требуется предприятию, можно обеспечить только при помощи активной системы. Активная система обычно состоит из солнечных коллекторов, установленных на южном скате крыши (в Северном полушарии) и бака-накопителя, установленного возле солнечного коллектора. Когда на панель попадает достаточно солнечной радиации, специальный регулятор приводит в действие насос, который начинает прогонять жидкость - воду или антифриз - через солнечную панель. Жидкость принимает тепло от коллектора и передает его резервуару с водой, где она хранится, пока не понадобится. Если солнечная система не нагрела воду до нужной температуры, может использоваться дополнительный источник энергии. Тип и размер системы определяются по тому же принципу, что и размер солнечного коллектора для жилого дома (см. выше). Уход за промышленными солнечными системами зависит от типа и размеров системы, однако, благодаря ее простоте, ей требуется минимальный уход.Для многих видов коммерческой и промышленной деятельности самое большое преимущество солнечного коллектора - экономия топлива и энергии. Однако, нельзя забывать и о существенных экологических преимуществах. Выбросы в атмосферу таких загрязнителей, как сернистый газ, угарный газ и закись азота уменьшаются, когда владелец фирмы решает воспользоваться более чистым источником энергии - Солнцем.

СОЛНЕЧНОЕ ОХЛАЖДЕНИЕ

В мире возрастает спрос на энергию для кондиционирования и охлаждения. Это происходит не только из-за увеличивающейся потребности в комфорте в развитых странах, но и в связи с необходимостью хранения продовольствия и медицинских товаров в регионах с теплым климатом, особенно в странах третьего мира.Существуют три основных метода активного охлаждения. Прежде всего, использование электрических компрессоров, представляющих собой сегодня стандартное охлаждающее устройство в Европе. Во-вторых, использование абсорбционных кондиционеров, приводимых в действие с помощью тепловой энергии. Оба вида используются для кондиционирования воздуха, т.е. охлаждения воды до 5 оC, и замораживания ниже 0 оC. Есть и третья возможность для кондиционирования воздуха - охлаждение с использованием испарения. Все системы могут работать на солнечной энергии, их дополнительное преимущество - использование абсолютно безопасных рабочих жидкостей: простой воды, солевого раствора или аммиака. Возможные применения этой технологии - не только кондиционирование воздуха, но и охлаждение для хранения продовольствия и т.д.

СУШКА

Солнечный коллектор, который нагревает воздух, может служить дешевым источником тепла для сушки сельскохозяйственных культур - зерна, фруктов или овощей. Так как солнечные коллекторы с высокой эффективностью нагревают температуру воздуха в помещении на 5-10 оС (а сложные устройства - еще больше), они могут использоваться для кондиционирования воздуха на складах.Использование простых и дешевых солнечных коллекторов для подогрева воздуха при сушке урожая является перспективным для снижения огромных потерь урожая в развивающихся странах. Отсутствие адекватных условий хранения приводит к значительным потерям продовольствия. Хотя невозможно точно подсчитать масштабы потерь урожая в этих странах, некоторые источники оценивают их приблизительно в 50-60%. Чтобы избежать таких потерь, производители обычно продают урожай немедленно после сбора по низким ценам. Сокращение потерь благодаря сушке свежих плодов принесло бы большую пользу и производителям, и потребителям. В некоторых развивающихся странах для сохранения продовольствия широко используется метод сушки под открытым небом. Для этого продукт раскладывают на земле, камнях, на обочинах дорог или на крышах. Преимущество этого метода - в простоте и дешевизне. Однако качество конечного продукта низко из-за долгого времени высыхания, загрязнения, заражения насекомыми и порчи из-за перегрева. Кроме того, достижение достаточно низкого содержания влаги - дело трудное, и зачастую кончается порчей продукта при хранении. Введение солнечных сушилок поможет улучшить качество высушенных изделий и снизить убытки.

СОЛНЕЧНЫЕ ПЕЧИ

Успешное использование солнечных печей (плит) отмечалось в Европе и Индии уже в 18-м веке. Солнечные плиты и духовые шкафы поглощают солнечную энергию, превращая ее в тепло, которое накапливается внутри замкнутого пространства. Поглощенное тепло используется для варки, жарки и выпечки. Температура в солнечной печи может достигать 200 градусов Цельсия.Солнечные печи бывают разных форм и размеров. Приведем несколько примеров: духовой шкаф, печь-концентратор, рефлектор, солнечный пароварочный аппарат и т.д. При всем разнообразии моделей, все печи улавливают тепло и удерживают его в теплоизолированной камере. В большинстве моделей солнечный свет непосредственно воздействует на пищу.

ЯЩИЧНЫЕ СОЛНЕЧНЫЕ ПЕЧИ

Ящичные солнечные печи состоят из хорошо изолированной коробки,окрашенной внутри в черный цвет, в которую помещают черные кастрюли с едой. Коробка накрывается двухслойным "окном", которое пропускает солнечное излучение в ящик и удерживает тепло внутри. Вдобавок к нему крепится крышка с зеркалом на внутренней стороне, которая, будучи откинутой, усиливает падающее излучение, а в закрытом виде улучшает теплоизоляцию печи.Основные преимущества ящичных солнечных печей:
    Используют как прямое, так и рассеянное солнечное излучение. В них можно нагревать одновременно несколько кастрюль. Они легки, портативны и просты в обращении. Им не нужно поворачиваться вслед за Солнцем. Умеренные температуры делают помешивание не обязательным. Еда остается теплой целый день. Их легко изготовить и отремонтировать, используя местные материалы. Они относительно недороги (по сравнению с другими типами солнечных печей).
Присущи им, конечно, и некоторые недостатки:
    С их помощью можно готовить только в дневное время. Из-за умеренной температуры на приготовление пищи требуется продолжительное время. Стеклянная крышка приводит к значительным потерям тепла. Такие печи "не умеют" жарить.
Благодаря своим преимуществам, солнечные печи-ящики являются наиболее распространенным видом солнечных печей. Они бывают разных видов: промышленного производства, кустарные и самодельные; формой могут напоминать плоский чемоданчик или широкий низкий ящик. Бывают и стационарные печи, сделанные из глины, с горизонтально расположенной крышкой (в тропических и субтропических районах) или наклонной (в умеренном климате). Для семьи из пяти человек рекомендуются стандартные модели с площадью апертуры (входной площади) около 0,25 м2. В продаже встречаются и более крупные варианты печей -- 1 м2 и более.

ЗЕРКАЛЬНЫЕ ПЕЧИ (С ОТРАЖАТЕЛЕМ)

Простейшая зеркальная печь представляет собой параболический рефлектор и подставку для кастрюли, расположенную в фокусе печи. Если печь выставлена на Солнце, то солнечный свет отражается от всех рефлекторов в центральную точку (фокус), нагревая кастрюлю. Рефлектор может представлять собой параболоид, изготовленный, например, из листовой стали или отражающей фольги. Отражающая поверхность обычно изготовлена из полированного алюминия, зеркального металла или пластика, но может состоять также из множества маленьких плоских зеркал, прикрепленных к внутренней поверхности параболоида. В зависимости от нужного фокусного расстояния, рефлектор может иметь форму глубокой миски, в которую полностью погружается кастрюля с едой (короткое фокусное расстояние, посуда защищена от ветра) или мелкой тарелки, если кастрюля устанавливается в фокусной точке на определенном расстоянии от рефлектора.Все печи-отражатели используют только прямое солнечное излучение, и поэтому должны постоянно поворачиваться за Солнцем. Это усложняет их эксплуатацию, так как ставит пользователя в зависимость от погоды и регулирующего устройства.Преимущества зеркальных печей: Способность достигать высоких температур и, соответственно, быстрое приготовление пищи. Относительно недорогие модели. Некоторые из них могут служить также для выпечки.Перечисленным достоинствам сопутствуют и некоторые недостатки: В зависимости от фокусного расстояния, печь должна поворачиваться за Солнцем примерно каждые 15 минут. Используется только прямое излучение, а рассеянный солнечный свет теряется. Даже при небольшой облачности возможны большие потери тепла. Обращение с такой печью требует определенного навыка и понимания принципов ее действия. Отраженное рефлектором излучение очень ярко, слепит глаза, и может привести к получению ожога при контакте с фокальным пятном. Приготовление пищи ограничивается дневными часами. Повару приходится работать на жарком солнце (за исключением печей с фиксированной фокусировкой). Эффективность печи в большой степени зависит от изменяющейся силы и направления ветра. Блюдо, приготовленное днем, к вечеру остывает.Сложность обращения с этими печами в сочетании с тем фактом, что повар вынужден стоять на Солнце, является главной причиной их невысокой популярности. Но в Китае, где приготовление еды традиционно требует высокой температуры и мощности, они широко распространены.

СОЛНЕЧНАЯ ДИСТИЛЛЯЦИЯ

Во всем мире множество людей испытывает нехватку чистой воды. Из 2,4 млрд жителей развивающихся стран менее 500 млн имеют доступ к чистой питьевой воде, не говоря уже о дистиллированной. Решению этой проблемы может способствовать солнечная дистилляция. Солнечный дистиллятор - это простое устройство, которое превращает соленую или загрязненную воду в чистую, дистиллированную. Принцип солнечной дистилляции известен с давних пор. В четвертом веке до нашей эры Аристотель предложил метод испарения морской воды для производства питьевой. Однако солнечный дистиллятор был построен только в 1874 году, когда Дж. Хардинг и С. Вильсон построили его в Чили, чтобы дать чистую воду селению шахтеров. Этот дистиллятор площадью 4700 м2 производил 24 000 литров воды в день. В настоящее время такие установки большой производительности имеются в Австралии, Греции, Испании, Тунисе, на острове Св. Винсента в Карибском море. Установки поменьше имеются в широком употреблении в других странах.Практически любое морское побережье и пустынные местности можно превратить в обитаемые, используя солнечную энергию для подъема и очистки воды. Все этапы этого процесса - работа насоса, очистка и подача воды в дистиллятор - осуществляются при помощи солнечной энергии.

КАЧЕСТВО ВОДЫ

Полученная на такой установке вода отличается высоким качеством. Обычно она показывает лучший результат при тестировании на количество растворенных в воде веществ. Она также насыщена воздухом, так как конденсируется в дистилляторе в присутствии воздуха. Вода может поначалу показаться непривычной на вкус, так как в ней нет минеральных веществ, к которым привыкло большинство из нас. Тесты показывают, что дистилляция устранила все бактерии, а содержание пестицидов, удобрений и растворителей снижается на 75-99,5 %. Все это имеет огромное значение для стран, в которых люди по-прежнему гибнут от холеры и других инфекционных заболеваний.

СОЛНЕЧНЫЕ ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

СОЛНЕЧНЫЕ КОНЦЕНТРАТОРЫ

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду.Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма "Luz Corp." установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.Технологии получения солнечной тепловой электроэнергии, основанные на концентрации солнечного света, находятся на разных этапах разработки. Параболические концентраторы уже сегодня применяются в промышленном масштабе: в пустыне Мохаве (штат Калифорния) мощность установки составляет 354 МВт. Солнечные электростанции башенного типа проходят фазу демонстрационных проектов. Пилотный проект под названием "Solar Two" мощностью 10 МВт проходит испытания в г. Барстоу (США). Системы тарельчатого типа проходят стадию демонстрационных проектов. Несколько проектов находятся в конструкторской разработке. В г. Голден (США) работает 25-киловаттная станция-прототип. Солнечные тепловые электростанции отличает ряд особенностей, которые делают их весьма привлекательными технологиями на расширяющемся мировом рынке возобновляемой энергии.Тепловые солнечные электростанции за последние несколько десятилетий преодолели трудный путь. Продолжение проектно-конструкторских работ должно сделать эти системы более конкурентоспособными по сравнению с использованием ископаемого топлива, увеличить их надежность и создать серьезную альтернативу в условиях всевозрастающего спроса на электроэнергию.Солнечные прудыНи фокусирующие зеркала, ни солнечные фотоэлементы (см. ниже) не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли - на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный"рассол" используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.1. Высокая концентрация соли2. Средний слой.3. Низкая концентрация соли4. Холодная вода "в" и горячая вода "из"

ФОТОЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ

Устройства для прямого преобразования световой или солнечной энергии в электроэнергию называются фотоэлементами (по-английски Photovoltaics, от греческого photos - свет и названия единицы электродвижущей силы - вольт). Преобразование солнечного света в электричество происходит в фотоэлементах, изготовленных из полупроводникового материала, например, кремния, которые под воздействием солнечного света вырабатывают электрический ток. Соединяя фотоэлементы в модули, а те, в свою очередь, друг с другом, можно строить крупные фотоэлектрические станции. Крупнейшая такая станция на сегодняшний день - это 5-мегаваттная установка Карриса Плейн в американском штате Калифорния. КПД фотоэлектрических установок в настоящее время составляет около 10%, однако отдельные фотоэлементы могут достигать эффективности 20% и более.

СОЛНЕЧНЫЕ МОДУЛИ

Солнечный модуль - это батарея взаимосвязанных солнечных элементов, заключенных под стеклянной крышкой. Чем интенсивнее свет, падающий на фотоэлементы и чем больше их площадь, тем больше вырабатывается электричества и тем больше сила тока. Модули классифицируются по пиковой мощности в ваттах (Втп). Ватт - единица измерения мощности. Один пиковый ватт - техническая характеристика, которая указывает на значение мощности установки в определенных условиях, т.е. когда солнечное излучение в 1 кВт/м2 падает на элемент при температуре 25 оC. Такая интенсивность достигается при хороших погодных условиях и Солнце в зените. Чтобы выработать один пиковый ватт, нужен один элемент размером 10 x 10 см. Более крупные модули, площадью 1 м x 40 см, вырабатывают около 40-50 Втп. Однако солнечная освещенность редко достигает величины 1 кВт/м2. Более того, на солнце модуль нагревается значительно выше номинальной температуры. Оба эти фактора снижают производительность модуля. В типичных условиях средняя производительность составляет около 6 Вт·ч в день и 2000 Вт·ч в год на 1 Втп. 5 ватт-час - это количество энергии, потребляемое 50-ваттной лампочкой в течение 6 минут (50 Вт x 0,1 ч = 5 Вт·ч) или портативным радиоприемником в течение часа (5 Вт x 1 ч = 5 Вт·ч).

ПРОМЫШЛЕННЫЕ ФОТОЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ

Уже несколько лет небольшие фотоэлектрические системы применяются в коммунальном электро-, газо- и водоснабжении, доказав свою экономичность. В большинстве своем они имеют мощность до 1 кВт и включают в себя аккумуляторы для накопления энергии. Они выполняют множество функций: от питания сигнальных огней на опорах ЛЭП для оповещения самолетов до контроля качества воздуха. Они продемонстрировали надежность и долговечность в коммунальном хозяйстве и готовят почву для будущего внедрения более мощных систем.

ЗАКЛЮЧЕНИЕ

В средней полосе гелиосистема позволяет частично обеспечить потребности отопления. Опыт эксплуатации показывает, что сезонная экономия топлива за счет использования солнечной энергии достигает 60%Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно.Постоянное уменьшение стоимости солнечного ватта позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельными электростанциями.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Лаврус В.С. Источники энергии / Серия "Информационное Издание", Выпуск 3 "Наука и Техника", 1997


Top