Цирконий в таблице. Циркониевые браслеты – целебная сила металла

Этот химический элемент, который впоследствии с атомной массой в 91,224 г/моль занял 40-е место в таблице Д.И. Менделеева, был получен шведским химиком Йенсом Якобом Берцелиусом в начале XIX века. За основу был взят оксид ZrO2, который обнаружили в драгоценном камне, привезенном еще одним ученым – Мартином Генрихом Клапротом – с Цейлона. Успешным оказалось воздействие на фторцирконат калия металлического натрия:

К2 + 4Na → Zr + 2KF + 2NaF


Итогом опытов стало получение чистого циркония – блестящего, серебристо-белого металла, невероятно пластичного, но вместе с тем достаточно плотного. Впоследствии выяснилось, что Zr прекрасно поддается обработке – горячей и холодной (ковка, прокатка, штамповка), но практически полностью теряет свои лучшие качества, получая неметаллические примеси.

Физические свойства Циркония

Известны 2 кристаллические модификации циркония:

  • α-цирконий – гексагональная плотноупакованная решетка (а = 3.228Å; с = 5,120Å)
  • β-цирконий – кубическая объемноцентрированная решетка (а = 3,61Å)

Получение β-формы из α-формы возможно при нагревании металла до 862°С.

Цирконий обладает следующими физическими свойствами:

  • плотность циркония – 6,45 г/см3 (при нормальных условиях, т.е. при 20°С)
  • температура плавления – 1825°С
  • температура кипения 3580-3700°С
  • удельная теплоемкость (25-100°С) – 0,291 кдж/(кг·К)
  • коэффициент теплопроводности (50°С) – 20,96 вт/(м·К)
  • температурный коэффициент линейного расширения (20-400°С) – 6,9·10-6
  • удельное электрическое сопротивление (20°С) – 44,1 мком·см


Металл, имеющий в качестве примесей водород, углерод, азот или кислород, заметно увеличивает в своей хрупкости. Чистый же цирконий наделен:

  • модулем упругости (20 °С) – 97 Гн/м2(9700 кгс/мм 2)
  • пределом прочности при растяжении – 253 Мн/м 2 (25,3 кгс/мм 2)
  • твердостью по Бринеллю – 640-670 Мн/м 2 (64-67 кгс/мм 2)

Коррозионная стойкость циркония

Защита от коррозии – вот то качество, которое в случае с цирконием зачастую ставится во главу угла. Данный элемент не растворим ни в щелочах, ни в азотной или соляной кислотах. Это прекрасный легирующий элемент, который делает любые многокомпонентные магниевые сплавы на порядок более коррозионно-устойчивыми.

Помимо коррозионной защиты цирконий способен заметно улучшать и другие качества сплава: сохранять его вязкость, повышать ударопрочность, а в медных сплавах – сохранять электропроводность на фоне значительного упрочнения. Всего нескольких десятых процента Zr в магниевом сплаве увеличивают его прочность вдвое. Почти то же можно сказать и об алюминиевых сплавах, которые при наличии циркония на порядок повышают свои эксплуатационные характеристики.

Цирконий в металлургии

Цирконий – металл, широко используемый в металлургии. Прежде всего, его применяют в качестве высокоэффективного раскислителя (по этим свойствам Zr оказался лучше титана и марганца). Также цирконий способствует сохранению вязкости сталей, наделяя при этом их стойкостью к большим ударным нагрузкам. Наконец, элемент Zr выводит из сплава газы и серу, а значит, способствует сохранению пластичности металла.

Для примера: металлический сплав без циркония выдерживает ударную нагрузку в 900 кг. Лишь 0,1-процентная добавка Zr повышает её до 1600 кг.

В цветной металлургии цирконий выступает в качестве легирующего элемента, а также используется для повышения теплостойкости алюминиевых сплавов.

Наша планета богата полезными ископаемыми,в том числе и металлами. Одним из наиболее распространенных, считается цирконий. Его можно отыскать в любых уголках Земли. Что представляет собой этот металл, каковы его свойства и где он находит применение?

Химические свойства

Простое вещество цирконий является элементом побочной подгруппы IV группы пятого периода периодической системы Д. И. Менделеева. Ему присвоен атомный номер 40, а его атомная масса составляет 91,224. Это серо-стальной металл с желтоватым оттенком и с характерным блеском. Его получают методом переплавки циркониевых отходов и с рудного концентрата, поскольку в чистом виде в земной коре не встречается.

В природе металлический цирконий распространен в виде химических природных соединений - более 40 солей или оксидов. В конце 18 века немецкий ученый Клапрот выделил окисел циркония из камня гиацинта. Он относится к драгоценной разновидности этого камня. До 20 века металл не удавалось получить в чистом виде, но в 20-х годах ученые все-таки добились успеха.

В очищенном виде он обладает многими свойствами, которыми отличается золото:

  • пластичный;
  • ковкий;
  • антикоррозийный;
  • жаростойкий;
  • парамагнитный.

Металл не боится воздействия хлорированной и морской воды . Он не теряет своих высоких качеств при низких и высоких температурах. Устойчив к аммиаку, кислотам и щелочам. В основном его используют для добавления к сплавам других металлов, что повышает его технологичность и делает его свойства почти уникальными. Свое название он получил от персидского слова "царгун" (золотой камень).

Довольно часто цирконий путают с цирконом , который является силикатом циркония. Металл может менять свою окраску и по цвету бывает:

  • зеленый;
  • коричневый;
  • черный;
  • желтый;
  • иногда красный.

Его цвет зависит от примесей, которые входят в состав. В число примесей, окрашивающих камень, часто входят - кальций, медь, железо, цинк, уран, стронций, титан. Также в составе присутствуют и редкоземельные элементы.

Нахождение в природе

Рудные залежи циркония широко распространены в недрах земли. Залежи можно увидеть в нескольких формах в виде:

  • аморфных окислов;
  • солей;
  • монокристаллов.

В африканских месторождениях находят кристаллы весом до 1 кг. Больше всего циркония (металла) сосредоточенно на территории Австралии, Индии, ЮАР, Бразилии и Северной Америки. В этих государствах самые большие запасы этого металла. В России находится почти 10% мировых запасов циркония в Сибири и на Урале. Чаще всего в руде он встречается совместно с гафнием, поскольку тот близок к нему по своим свойствам. Каждый их них имеет свои привлекательные характеристики, но в совмещенном виде их использовать нельзя. Многоступенчатая очистка позволяет разделить эти два элемента, но такой производственный процесс делает цирконий значительно дороже.

В природе встречаются крупные зеленые и непрозрачные цирконии , но они могут вызывать повышенную радиацию. Такие экземпляры нельзя подвергать огранке, хранить в домах и перевозить в больших объемах. По распространению среди металлов во всем мире цирконий занимает 12 место. Несмотря на этот факт, он длительное время был непопулярным элементом, даже в сравнении с редкими радиоактивными элементами. Это объясняется тем, что его запасов рассеяно на земле много, но очень крупных запасов не так много.

Применение металлического циркония

Благодаря своим уникальным свойствам и качествам, этот элемент может применяться во многих отраслях. Его используют в виде сплавов в разных сферах современной промышленности:

  • самолетостроение;
  • ядерная энергетика;
  • ракетостроение;
  • приборостроение;
  • литейное производство;
  • военная промышленность;
  • медицинское оборудование.

Из-за высокой устойчивости, которая даже превышает показатели титана, он стал пользоваться большой популярностью в медицинской отрасли. Его применяют для протезирования и производства хирургических инструментов.

Издавна металлический цирконий использовался для создания ювелирных украшений. Он способен приобретать многие оттенки, поскольку он анодированный металл. Это позволяет ювелирам воплощать самые разные художественные замыслы в создании украшений. Изделия смотрятся элегантно и красиво выглядят, поэтому ценятся на мировом рынке ювелирных украшений.

Благодаря высокой степени коррозийной защиты этот легирующий элемент помогает сделать многокомпонентные магниевые сплавы намного устойчивее к проявлениям коррозии. Он также улучшает вязкость сплавов, повышает их ударопрочность. В сплавах с медью, кроме, прочности сохраняет электропроводность. В сплавах с алюминием этот уникальный элемент значительно повышает их эксплуатационные качества.

Широко используется элемент в металлургической промышленности и проявляет себя как высокоэффективный раскислитель . Это качество в несколько раз превышает показатели марганац и титана. Цирконий улучшает вязкость марок сталей, тем самым помогает им быть более устойчивыми к ударным нагрузкам. Он способствует пластичности, выводя из сплавов серу и газ. В качестве легирующего элемента также применяется в цветной металлургии и для повышения теплоемкости алюминиевых сплавов.

Лечебные свойства

Из-за своих особых физических и химических свойств цирконий стал активно применяться в медицине. Благодаря своей нейтральности к воздействию щелочной, кислотной и водной среде, а также аммиака его добавляют в составы для изготовления медицинских инструментов. Он стимулирует скорейшее заживление ран и проявляет антимикробное действие . Благодаря таким свойствам в ранах не образуется гной и в них не проникают инфекции.

Элемент не является аллергеном, поэтому облегчает аллергические реакции. Не пропускает радиационное излучение и считается прекрасным антисептиком. В медицине его стали использовать для изготовления шовных нитей. Поскольку металл очень пластичный он дает возможность сохранить структуру костей при переломах. Благодаря этому кости быстрей срастаются.

Его также активно используют в стоматологии и ортопедическом протезировании. На ткани организма он не оказывает раздражающего воздействия и нейтрален по отношению к любой среде. Многие виды металлов вызывают аллергическую реакцию в ротовой полости, чего не скажешь о цирконии. Благодаря своим характеристикам и редким свойствам он стал незаменим в изготовлении медицинских инструментов и имплантатов.

Он содержится в некоторых продуктах питания, но в минимальных количествах. Например, в баранине, овсянке, рисе, фисташках, бобовых и других продуктах питания есть цирконий, но его там слишком мало, чтобы вызвать негативные последствия для здоровья.

Считается, что украшения с цирконием положительно влияют на организм . Если после прокалывания ушей сразу надеть серьги с цирконием, то ранки быстрей заживут. Металл хорошо влияет на состояние кожи, поэтому рекомендуется носить браслеты и другие изделия на теле. Он оказывает целебное воздействие при кожных заболеваниях, артрозах, артритах, гипертонической болезни. Несмотря на такие проявления, официальная медицина пока таких подтверждений не дает.

Цирконий (Zr) — элемент с атомным номером 40 и атомным весом 91,22. Является элементом побочной подгруппы четвёртой группы, пятого периода периодической системы химических элементов Дмитрия Ивановича Менделеева. Цирконий в свободном состоянии при нормальных условиях представляет собой блестящий серебристо-белый металл плотностью 6,45 г/см3. Чистый, не содержащий примесей цирконий очень пластичен и с легкостью поддается холодной и горячей обработке. Как и многие другие металлы, включая своего соседа по группе — титан, цирконий, содержащий примеси неметаллов (особенно кислород), резко ухудшает свои механические свойства. Например, для надежной работы ядерного реактора необходимо, чтобы в расщепляющихся материалах такие «опасные» примеси, как бор, кадмий и другие, содержались в количествах, не превышающих миллионных долей процента. Чистый цирконий — один из лучших конструкционных материалов для атомных реакторов — становится совершенно непригодным для этой цели, если в нем содержится даже незначительная примесь гафния, который не имеет собственных минералов и в природе обычно сопутствует цирконию.

Науке известно пять природных изотопов циркония: 90Zr (51,46 %), 91Zr (11,23 %), 92Zr (17,11 %), 94Zr (17,4 %), 96Zr (2,8 %). Из искусственно полученных радиоактивных изотопов циркония важнейшим является 95Zr, период полураспада которого 65 суток. Он нашел применение в качестве изотопного индикатора.

В 1789 году немецкий химик Мартин Генрих Клапрот выделил двуокись циркония в результате анализа минерала циркона. В виде порошка впервые цирконий был получен гораздо позже — в 1824 году Йенсом Якобом Берцелиусом, а пластичный цирконий получили только в 1925 году голландские ученые А. ван Аркел и И. де Бур вследствие термической диссоциации иодидов циркония.

Одно из наиболее ценных свойств металлического циркония - его высокая стойкость против коррозии в различных средах. Например, он не растворяется в азотной и соляной кислотах и в щелочах. На этом свойстве металла № 40 основано легирование сталей цирконием. Так многокомпонентные магниевые сплавы с добавкой циркония становятся более коррозионно-устойчивыми. Цирконий повышает стойкость титана к действию кислот. Кроме того, стали, легированные цирконием, не теряют необходимой вязкости в широком интервале температур, они хорошо сопротивляются ударным нагрузкам. Повышается прочность легированных сталей. Добавка циркония к меди значительно повышает ее прочность, почти не снижая электропроводность. Сплав на основе магния с добавкой нескольких процентов цинка и всего нескольких десятых процента циркония вдвое прочнее чистого магния и не теряет прочности при 200° C. Качество алюминиевых сплавов также значительно повышается при добавлении к ним циркония.

Цирконий почти не захватывает медленные (тепловые) нейтроны. Именно на этом его свойстве в сочетании с высокой стойкостью против коррозии и агрессивных сред, механической прочностью при повышенных температурах основано его и сплавов на его основе активное использование в конструировании энергетических атомных реакторов.

При производстве сталей присадки циркония служат для удаления из нее кислорода, азота, серы. Также цирконий используется в качестве легирующего компонента некоторых броневых, нержавеющих и жаропрочных сталей.

На таком известном свойстве циркония, как активное поглощение газов в нагретом состоянии, основано его применение при спекании порошков металлов, а также в электровакуумной технике. Так при температуре 300° C цирконий поглощает водород, а при 400° C и выше взаимодействует с кислородом и азотом.

Биологические свойства

Напрямую цирконий не играет важных биологических ролей в жизнедеятельности человеческого организма. Он не является биоэлементом, не входит в структурный материал клеток — не является жизненно важным микроэлементом. Вполне возможно, что это связано со слабой изученностью всех свойств данного металла, ведь постепенно, год за годом, цирконий раскрывает все новые и новые качества, связанные с влиянием этого элемента на организм и здоровье людей.

В настоящее время в клиниках травматологии и челюстно-лицевой хирургии для лечения множественных переломов костей применяется метод фиксаторов (имплантантов), которые точно и прочно фиксируют обломки костей совершенно, исключая даже самые малые сдвиги, что способствует скорейшему срастанию костных тканей и быстрому заживлению послеоперационной раны.

В мировой практике производители имплантантов применяют для изготовления пластин и винтов нержавеющую сталь и титановые сплавы. В нашей стране были разработаны и освоены имплантанты из циркониевых сплавов марок Э125 и Э110, которые не уступают лучшим зарубежным образцам. Скорее наоборот - использование имплантантов из циркониевых сплавов предоставляет ряд преимуществ: высокая коррозионная стойкость материала; отличная биологическая совместимость (отсутствие аллергических реакций и отторжения), благодаря которой, отпала необходимость в повторном хирургическом вмешательстве для извлечения имплантантов; высокие прочностные свойства циркониевых сплавов. Относительно невысокая плотность сплава позволяет облегчить конструкцию имплантанта; превосходная пластичность обеспечивает более точную подгонку гибом имплантанта по контуру кости.

Перечень инструментов и имплантантов для челюстно-лицевой хирургии и нейрохирургии весьма широк: более двух десятков видов пластин и скоб, кортикальные винты для крепления, кровоостанавливающие зажимы, сверла и даже нити для наложения швов при операциях мозга!

Элемент № 40, как и его сплавы, не обладает раздражающим действием на окружающие мягкие ткани и кость, отлично совместим с биологическими тканями, а также оказывает особое влияние на них. Медики установили, что ношение сережек из циркония заживление ранки мочки уха после прокалывания происходит на 2-3 дня раньше, чем при ношении сережек из золота. Кроме того, люди, постоянно носящие бижутерию, изготовленную с применением циркония или цирконов, отмечали значительное улучшение своего общего состояния в целом. Опыты дали положительные результаты при лечении циркониевыми браслетами, поясами и пластинами кожных заболеваний: дерматитах, нейродерматитах, детских экземах, при заболеваниях опорно-двигательного аппарата, отделов позвоночника, артритах и артрозах обменного генеза, переломах верхних и нижних конечностей и других заболеваниях. Положительный эффект наблюдается более чем у 90 % пациентов.

Здоровая половина испытуемых не почувствовала каких-либо отрицательных влияний от ношения браслетов, но отметила улучшение общего состояния здоровья.

Таким образом, можно утверждать, что циркониевые браслеты и прочая бижутерия из этого металла, его сплавов и минералов не является панацеей от всех болезней, однако определенный оздоровительный эффект на человеческий организм имеет. Во всяком случае - не приносит вреда.

Средневековые ювелиры часто использовали при создании уникальных украшений так называемые ими «несовершенные алмазы». Немногим отличались эти «алмазы» от настоящих драгоценных камней - несколько мягче и слегка мутнее, что не позволяло ограненному камню сиять и переливаться, как алмаз. Были у этих камней и более определенные имена: матарские алмазы – по месту их добычи – местности Матаре (Маттураи) на острове Шри-Ланка. Жаргон или цейлонский жаргон — желтые, соломенно-желтые и дымчатые цирконы. Их также называют сиамскими алмазами. Старлит или старлайт - циркон с природной или полученной после термохимической обработки небесно-голубой окраской. Гиацинт - прозрачный медово-желтого, красно-коричневого, красно-бурого, красного, розового цветов циркон. Окраска этого камня напоминает гиацинт - цветок, выращенный, по древнегреческому мифу, Аполлоном из тела (или крови) прекрасного юноши Гиацинта, любимца Аполлона, убитого богом ветра Зефиром.

Конечно же, средневековые мастера не знали, что работают с минералом циркония – монокристаллами циркона.

Цирконий имеет очень малое сечение захвата тепловых нейтронов. Поэтому металлический цирконий, не содержащий гафния, и его сплавы применяются в атомной энергетике для изготовления тепловыделяющих элементов, тепловыделяющих сборок и других конструкций ядерных реакторов. Так на первой американской атомной подводной лодке «Наутилус» был установлен реактор, полностью изготовленный из циркония. Позже выяснилось, что выгоднее делать из циркония оболочки топливных элементов (ТВЭЛов), а не стационарные детали активной зоны реактора.

Добавки циркония при легировании сталей увеличивают прочностные характеристики сплава. Так опытные образцы сталей не легированных цирконием разрушаются при нагрузке менее тонны, сталь того же состава, но с добавкой всего 0,1 % циркония выдерживает нагрузку выше полутора тонн!

Технические условия на цирконий так называемой «реакторной чистоты» допускают присутствие в нем не больше 0,02 % гафния. Но и такие гомеопатические дозы вечного спутника циркония довольно существенно - в шесть с половиной раз - снижают нейтронную прозрачность циркония!

Двуокись циркония обладает очень интересным свойством: сильно нагретая, она излучает свет настолько интенсивно, что может быть использована в осветительной технике. О таком свойстве диоксида циркония первым узнал известный немецкий физик Вальтер Герман Нернст. На основе этого необычного явления физик сконструировал лампу, впоследствии получившей имя «лампа Нернста», в которой стержни накаливания были изготовлены из двуокиси циркония.

Весьма интересное применение нашел тетрахлорид циркония. Электропроводность пластинки из этого вещества меняется в зависимости от давления, которое на нее действует. На этом принципе основана работа универсального манометра - прибора, измеряющего давление. При самом малом изменении давления меняется и сила тока в цепи прибора, шкала которого отградуирована в единицах давления. Такие манометры крайне чувствительны к изменениям давления, поэтому с их помощью можно определять давление от стотысячных долей атмосферы до тысяч атмосфер!

Дождевые плащи обязаны своим влагоотталкивающим свойствам солям циркония, которые входят в состав особой эмульсии для пропитки тканей. Соли циркония применяют также для изготовления цветных типографских красок, специальных лаков, пластических масс. В качестве катализатора соединения циркония используют при производстве высокооктанового моторного топлива. Сернокислые соединения этого элемента славятся отличными дубильными свойствами.

История

На самом деле история известности циркония человечеству довольно давняя — еще во времена господства Рима в Иудеи первосвященники носили в своих украшениях гиацинт - кристаллы циркона - основного минерала циркония. Этими кристаллами часто украшали свои изделия и средневековые ювелиры разных государств. Особую популярность украшения с цирконами приобрели в Индии в XV - XVI веках и в тридцатые годы XIX века.

Добывался этот минерал, содержащий цирконий, на острове Цейлон, с которого впоследствии купцы вывозили его в изобилии во многие страны. Такую незаурядную популярность эти кристаллы получили благодаря своей разнообразной и очень красивой окраске: от прозрачно-бесцветного и бледного желто-коричневого, переходящего в серо-зеленый до кроваво-красного. Именно красный циркон ювелиры называли гиацинтом (старинное название - перадоль), считая его одной из разновидностей топаза или рубина, сходных с ним по химическому составу. Лишь в конце XVIII века гиацинт получил свое современное название - циркон Zr, дал ему это имя минералог Вернер.

Именно один из таких цирконов с Цейлона попал в руки М. Г. Клапрота - члена Берлинской академии наук. В 1789 году он провел исследования драгоценного камня по собственно разработанной им методике и в том же году опубликовал результаты анализа. Клапрот получил вещество, которое назвал «цирконовой землей». Он сплавил порошок циркона с едкой щелочью в специальном серебряном тигле, затем растворил сплав в серной кислоте. Далее химик выделил из раствора кремнекислоту и железо, после чего получил кристаллы соли, а уже из них окисел (ту самую землю), названную им «циркония» (Zirconerde).

При таком наименовании Клапрот скорее всего отталкивался от следующих персидских понятий: «zar» («цар») - золото и «gun» («гун») - цвет, то есть дословно - «золотисто окрашенный». Из следующих соображений можно догадаться, что минерал, находившийся в руках химика, имел золотисто-коричневую окраску. Другое предположение о происхождения названия отталкивается от арабского слова «zarkun» - киноварь, минерал. Как видите, слова очень похожи, а это значит, что именно от их значений происходит название металла.

В русских источниках названия схожи, хотя имеют небольшие различия. Так у Шерера (1808) металл назван «циркон», Захаров (1810) придерживается той же формулировки, Двигубский (1824) более оригинален - «основание цирконной земли» или «цирконий», Страхов (1825) называет металл «цирконь».

Оксид циркония (II) выделил и Гитон де Морово только уже из гиацинта, найденного во Франции.

Металлический циркон (с очень большой долей примесей) впервые смог получить Й. Я. Берцелиус в 1824 году путем восстановления фтор-цирконат калия металлическим натрием:

К2 + 4Na → Zr + 2KF + 2NaF

В результате был получен серебристо-серый металл, который был настолько хрупким, что не поддавался обработке. Причиной всему было большое содержание примесей. Вследствие чего применение данный элемент не получил. Долго ученые разных стран пытались решить проблему чистоты металла. Лишь в 1914 году удалось получить относительно чистый цирконий, а металл, поддающийся обработке (ковке, вальцовке, прокатке) примерно так же, как медь, смогли выделить лишь в 1925 году нидерландские химики ван Аркель и де Бур. Они отошли от традиционного и всеми используемого метода электролиза, воспользовавшись своим новым методом «наращивания», который заключался в том, что летучее соединение (в их случае это был тетрайодид циркония ZrI4) подвергалось термическому распаду в вакууме, а на раскаленной нити вольфрама оседал чистый металл.

Нахождение в природе

Цирконий — довольно распространенный элемент: содержание его в земной коре составляет 0,025 % по массе. Среди металлов по распространенности он занимает двенадцатое место. Однако цирконий сильно распылен и сколько-нибудь значительные скопления его встречаются редко. Так в основных породах его содержание не превышает 1,3.10-2 %; в гранитах, песчаных и глинистых почвах этот элемент встречается гораздо чаще - 2 10-2 %, но наиболее распространен цирконий в щелочных породах - 5 10-2 %, что даже выше, чем среднее содержание в земной коре вообще. Чаще всего его можно встретить в виде различных химических соединений, которые в свою очередь залегают в литосфере, ведь цирконий - литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий, рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. Из-за такой рассеянности по породам и отсутствия больших залежей цирконий используется гораздо меньше, чем действительно редкие металлы. Этот металл является слабым водным мигрантом - в морской воде содержание циркония не превышает 0,00005 мг/л. В биологической среде он тоже не распространен.

В природе распространены главным образом циркон ZrSiO4, в котором 67,1 % ZrO2, бадделеит ZrO2 и различные сложные минералы: эвдиалит (Na,Ca)6ZrOH(Si3O9)2(OH,Cl)2 и др.

Циркон - самый распространенный циркониевый минерал, известный с древнейших времен, когда его именовали гиацинт, азорит, ауэрбахит, энгельгардит и другими именами. Циркон является островным силикатом, встречается во всех типах пород, но наиболее характерен для гранитов и сиенитов. Минерал представляет собой хорошо образованные кристаллы, вид которых изменяется в зависимости от условий формирования, так в гранитах и гранитных пегматитах встречаются кристаллы длиннопризматического характера, а в щелочных и метасоматических породах - дипирамидального типа. Так же можно обнаружить «двойников», «коленчатых двойников», радиально-лучистые и сноповидные срастания.

Зачастую кристаллы имеют сравнительно небольшие размеры (всего несколько миллиметров), но бывают и исключения массой в десятки и даже сотни каратов. В Северной Каролине в графстве Гиндерсон были обнаружены кристаллы циркона длиной несколько сантиметров. На Мадагаскаре нередки находки весом в несколько килограмм. В Соединенных Штатах Америки в Смитсоновском институте хранятся несколько цирконов, привезенных с острова Шри-Ланка. Они различаются по цвету и массе: самый большой циркон – коричневый весит 118,1 карата; желто-коричневый 97,6; желтый 23,5, бесцветный 23,9. Там же можно увидеть большие кристаллы из Бирмы и Тайланда. Богатыми коллекциями больших цирконов могут похвастать и Лондонский геологический музей, и Американский музей естественной истории в Нью-Йорке, и Канадский музей в Торонто. Немало крупных и очень красивых цирконов было добыто на Урале.

Зачастую цирконы содержат множество примесей: железо, алюминий, редкоземельные металлы, гафний, бериллий, уран и прочие. В связи с этим ученые выделяют несколько разновидностей циркона: малакон, цитролит, альвит, аршиновит и многие другие.

Минерал бадделеит, в отличие от циркона, был обнаружен сравнительно недавно - в 1892 году в Бразилии. Там же расположено основное месторождение этого минерала - Посус-ди-Калдас. Некоторые находки этого месторождения просто поражают - одна из глыб бадделеита, извлеченная из породы весила 30 тонн! Вдоль берегов рек и ручьев встречается бадделеит в виде аллювиальной гальки диаметром до 7,5 мм, которая содержит свыше 90 % двуокиси циркония. За свой внешний вид эта галька была прозвана местными старателями «фавас», что по-португальски значит «боб» (fava).

Применение

Области применения циркония и содержащих его минералов крайне разнообразны, они связаны с отраслями высоких технологий и в то же время с производством самых обычных потребительских товаров.

Первым потребителем циркония стала металлургия — сначала черная, затем цветная. Это связано с рядом свойств сорокового элемента. Благодаря большому сродству к кислороду, азоту, сере и фосфору сплав циркония с железом и кремнием или с алюминием и кремнием применяют в качестве раскислителя и очистителя стали.

Цирконий широко используется в качестве легирующего элемента, ведь добавка его к другим металлам придает им особые свойства - жаропрочность, кислотоупорность и многие другие. Кроме вновь приобретенных свойств сплавы с цирконием повышают свою механическую прочность, что способствует увеличению их рабочего ресурса и расширению возможностей использования в различных областях. Стоит привести несколько примеров таких сплавов и области их применения.

Ферроцирконий (сплав циркония с железом), содержащий до 20 % Zr, применяется в металлургии как раскислитель и дегазатор для стали. Химики и металлурги выяснили, что добавка циркония к железным сплавам, оказывает такое же влияние, как и введение в них кремния: улучшается качество нержавеющих и жароупорных сталей, повышается механическая прочность и свариваемость сталей.

Еще один сплав циркония, широко применяемый в черной металлургии наряду с ферроцирконием - сплав с кремнием. Этот сплав используют для дегазации сталей, ведь цирконий является энергичным раскислителем и рафинирующей добавкой, его введение быстро восстанавливает металлические окислы и удаляет азот.

Медноциркониевые сплавы используются для изготовления токопроводящих деталей электротехнической аппаратуры, нагревающихся во время работы. Введение циркония практически не влияет на высокую электропроводимость меди, но значительно повышает прочность и термостойкость сплава.

Сплавы магния с цирконием обладают хорошими механическими и физическими свойствами - считаются наиболее пригодными для конструкционных целей.

Сплавы алюминия с цирконием (до 3 % Zr) являются коррозионноустойчнвыми, они находят свое применение в сетках катодных электровакуумных ламп.

Наибольшее значение цирконий, очищенный от гафния, приобрел в качестве конструкционного материала в ядерных реакторах. Высокая коррозионная устойчивость в сочетании с механической прочностью, высокой температурой плавления и малым эффективным поперечным сечением поглощения тепловых нейтронов позволили в последнее время широко использовать цирконий для покрытия тепловыделительных элементов (ТВЭЛов).

Низкий и равномерный коэффициент термического расширения, высокая сопротивляемость коррозии, а также высокая механическая прочность и химическая стойкость обусловили применение циркония для изготовления высококачественной химической аппаратуры, медицинского оборудования, имплантантов и нитей для нейрохирургии.

Изоляторы в высокочастотном оборудовании, изготовленные из материалов, содержащих цирконий, значительно снижают потери энергии.

Порошкообразный цирконий используется преимущественно при изготовлении осветительных ракет, детонаторов, снарядных взрывателей и дистанционных бомб.

Но все же большая часть добываемого циркониевого сырья (около 90 %) используется в минеральной форме в виде циркона, который содержит до 66 % диоксида циркония (ZrO2). Благодаря своим свойствам - высокая температура плавления (более 2700° С), малый коэффициент термического расширения и стойкость к химическим воздействиям - ZrO2 стал широко применяться в самых разнообразных областях. Он обширно используется при получении термозащитных покрытий, высокоогнеупорных изделий, твердых электролитов, жаростойких эмалей, тугоплавких стекол, различных видов керамики, керамических пигментов, катализаторов, режущих инструментов и абразивных материалов, искусственных драгоценных камней. В последнее десятилетие с бурным развитием электроники и компьютерной техники, а также различных средств связи, диоксид циркония начал широко применяться в волоконной оптике и производстве керамики, используемой в электронике.

Карбид циркония ZrC ввиду его большой твердости применяют в качестве шлифовального материала, а также для замены алмазов при резке стекла.

Производство

Главным сырьевым источником промышленного производства металлического циркония является минерал циркон ZrSiO4.

Основные методы получения металлического циркония можно разделить на три группы: 1) методы восстановления; 2) методы термической диссоциации и 3) электролитические методы.

Прежде всего, циркониевые руды проходят этап обогащения, для чего применяется гравитационный способ с очисткой концентрата электростатической и магнитной сепарацией. Металлический цирконий производят из его соединений, которые получают разложением концентрата. При этом возможны следующие варианты:

а) спекание с известью или карбонатом кальция с добавлением CaCl2 при температурах свыше 1100° С:

ZrSiO4 + ЗСаО = CaZrO3 + Ca2SiO4

б) спекание с содой при температуре более 1000° С или сплавление с едким натром (температура должна быть выше 500° С):

ZrSiO4 + 2Na2CO3 = Na2ZrO3 + Na2SiO3 + 2CO2

Из сплава или спека, произведенных щелочным вскрытием, прежде всего, убирают соединения кремния выщелачиванием водой или разбавленной соляной кислотой, после чего остаток разлагают соляной или серной кислотами. В результате получаются оксихлорид и сульфаты соответственно.

в) спекание с фторосиликатом калия при температурах близких к 1000° С:

ZrSiO4 + K2SiF6 = K2ZrF6 + 2SiO2

Получившийся фторцирконатный спек прогревают и омывают подкисленной водой, фторцирконат калия переходит в воду, при охлаждении раствора большая часть (75-90 %) его выделяется.

г) хлорирование с углем при температуре около 1000° С, при этом возможна предварительная карбидизация при температуре от 1700 до 1800° С, предназначенная для удаления большей части кремния в виде легколетучего оксида (SiO). В результате получается хлорид циркония ZrCl4, который возгоняется и усиливается.

Из полученных кислых растворов выделяются соединения циркония по следующим методам:

а) гидролитическое осаждение основных сульфатов циркония хZrO2.ySO3 zH2O из сернокислых или солянокислых растворов;

б) кристаллизация оксихлорида циркония ZrOCl2 8H2O при выпаривании солянокислых растворов;

в) кристаллизация сульфата циркония Zr(SO4)2 при добавлении концентрированной серной кислоты или при выпаривании сернокислых растворов. В результате прокаливания сульфатов и хлоридов получают ZrO2.

Все соединения циркония, полученные из концентратов, всегда содержат гафний. Очищение циркония от него довольно трудоемкий и дорогостоящий процесс. Цирконий отделяется от своего постоянного спутника фракционной кристаллизацией K2ZrF6, экстракцией из кислых растворов органических растворителями (например, трибутилфосфатом), ионообменными методами, избирательным восстановлением тетрахлоридов (ZrCl4 и HfCl4).

Существует метод «наращивания», разработанный голландскими учеными ван Аркелем и де Буром. Он заключается в том, что летучее соединение (тетрайодид циркония ZrI4) подвергается термическому распаду в вакууме и на раскаленной нити вольфрама откладывается чистый металл. В двадцатых годах прошлого века этот метод был широко распространен, но высокая стоимость циркония, полученного этим методом, сильно ограничивала области его применения. Поэтому появилась необходимость в разработке нового, более дешевого способа получения циркония. Таким способом стал усовершенствованный метод Кроля. Схема этого производства предусматривает две основные стадии: двуокись циркония хлорируется, а полученный четыреххлористый цирконий восстанавливается металлическим магнием под слоем расплавленного металла. Конечный продукт — циркониевая губка переплавляется в прутки и в таком виде направляется потребителю.

Физические свойства

В свободном металлическом виде цирконий был выделен, как мы знаем, давно — в 1824 году шведским химиком Иенсом Берцелиусом. Получить же элемент высокой степени чистоты не удавалось в течение долгих десятилетий, именно поэтому изучить физические свойства этого металла не представлялось возможным. Только в середине двадцатого века ученым удалось получить цирконий свободный от примесей. Выяснилось, что в цирконии, порой в очень больших количествах, присутствует гафний - постоянный спутник этого металла, который ранее не был замечен из-за сходных с цирконием химических свойств.

Чистый цирконий имеет облик типичного металла - блестящий серебристо-серый цвет, напоминающий сталь, но отличающийся от нее большей прочностью и пластичностью. Причем последнее качество, как заметили металлурги, напрямую зависит от количества содержащегося в цирконии кислорода. Так, если в расплавленный жидкий цирконий попадает более 0,7 % кислорода, то металл будет хрупким из-за образования твердых растворов кислорода в цирконии, свойства которых сильно отличаются от свойств чистого металла. Такое же действие оказывают примеси азота, углерода и водорода. Плотность чистого циркония при 20 ° C составляет 6,45 г/см3, твердость по Бринеллю 640-670 Мн/м2 или 64-67 кгс/мм2. На твердость большое влияние имеет присутствие примесей (особенно кислорода), которые повышают твердость циркония, снижая его хрупкость. Так при содержании кислорода более 0,2 % цирконий не поддается холодной обработке давлением. Предел прочности циркония при растяжении 253 Мн/м2 или 25,3 кгс/мм2, модуль упругости при 20° С = 97 Гн/м2 или 9700 кгс/мм2.

Цирконий - металл высоких температур: температура плавления (tпл) высокочистого циркония 1845° C, температура кипения (tкип) 3580-3700° C. Двуокись же циркония ZrO2 - одно из самых тугоплавких веществ природы. Она плавится при температуре 2680° С! Такие свойства металла и его диоксида обусловили их применение в металлургии: легирование жаропрочных и жаростойких сталей цирконием, использование ZrO2 в изготовлении огнеупоров.

К выше приведенным тепловым характеристикам циркония стоит добавить следующие: удельная теплоёмкость в температурном коридоре 25-100° С = 0,291 кДж/(кг∙К) или 0,0693 кал/(г∙°С); коэффициент теплопроводности при 50° С = 20,96 вт/(м∙К) или 0,050 кал/(см∙сек∙°С); температурный коэффициент линейного расширения при температурах 20-400° С = 6,9∙10-6. Температура перехода в состояние сверхпроводимости 0,7К.

Для металлического циркония характерны две аллотропные модификации: α-модификация, имеющая гексагональное строение и устойчивая при температурах ниже 863° C и β-модификация, имеющая решетку пространственно центрированного куба и устойчивая при температуре выше 863° C. Таким образом переход α-модификации в β-модификацию происходит при этой пограничной температуре 863° C. Причем добавки алюминия, свинца, олова и кадмия повышают температуру перехода из одного состояния в другое, а добавки железа, хрома, никеля, молибдена, меди, титана и некоторых других металлов - понижают.

Удельное электрическое сопротивление циркония высокой степени чистоты при температуре 20° С = 44,1 мком∙см. Цирконий парамагнитен, его удельная магнитная восприимчивость увеличивается при нагревании металла. Так при температуре -73° C удельная магнитная восприимчивость циркония равна 1,28° C, а при 327° C - 1,41° C.

Наиболее ценное свойство чистого циркония - малое поперечное сечение захвата тепловых нейтронов (0,18 барна). Оно намного меньше, чем у других металлов - железо (2,53 барна), никель (4,60 барна) или медь (3,69 барна). Хотя многие более дешевые металлы имеют сечение захвата такого же порядка: у олова 0,65 барна, у алюминия – 0,22 барна, а у магния и того меньше – всего 0,06 барна. Однако все перечисленные металлы легкоплавки и нежаропрочны в отличие от циркония. Поэтому именно этот металл используется как конструкционный при строительстве реакторов.

Химические свойства

Одно из самых замечательных свойств циркония — это его высокая коррозионная стойкость по отношению ко многим агрессивным средам. По способности сопротивляться коррозии цирконий превосходит такие стойкие металлы, как ниобий и титан. При обычных условиях цирконий инертен по отношению к атмосферным газам и воде, не реагирует с соляной и серной (концентрацией до 50 %) кислотами. При проведении опытов было установлено, что нержавеющая сталь теряет в пятипроцентной соляной кислоте при 60° С примерно 2,6 миллиметра в год, титан - около 1 миллиметра, а цирконий - в 1000 раз меньше. Самое большое сопротивление цирконий оказывает щелочам, это единственный металл стойкий в щелочах, содержащих аммиак. По сопротивлению агрессивным средам цирконию уступает даже тантал - один из самых мощнейших борцов с коррозией.

Такая сопротивляемость легко объясняется химическими свойствами циркония, а точнее образованием защитной оксидной пленки на его поверхности, которая предохраняет металл от дальнейшего разрушения. Чтобы полностью окислить цирконий придется нагреть его до 700° C, только тогда пленка частично разрушится, частично растворится в металле. Получается, что именно температура в 700° C - граница, за которой заканчивается химическая стойкость элемента под номером 40. Но и до этой границы цирконий при нагреве уже до 300° C и выше начинает активнее реагировать с кислородом и прочими составляющими атмосферы. В итоге, образуя с водяными парами двуокись и гидрид, с углекислым газом - карбид и двуокись, с азотом - нитрид циркония. До этой же температуры цирконий надежно защищен окисной пленкой, которая гарантирует высокую химическую стойкость циркония.

И все же цирконий взаимодействует с кислотами, это происходит, если возможно образование анионных комплексов. Так при температуре выше 100° C он взаимодействует со смесью азотной и плавиковой кислот и царской водкой:

3Zr + 4HNO3 + 18HF = 3H2 + 4NO + 8H2O

3Zr + 4HNO3 + 18HCl = 3H2 + 4NO + 8H2O

Растворяется в плавиковой и горячей концентрированной (выше 50 %) серной кислотах:

Zr + 6HF = H2 + 2H2

Совершенно иначе на воздухе ведет себя цирконий в виде стружки или порошка. В отличие от компактного металлического циркония эти пироморфные вещества легко самовоспламеняются на воздухе уже при комнатных температурах. Такой процесс является экзотермическим и происходит с большим выделением теплоты. Пылевидный цирконий в смеси с воздухом способен взрываться.

Необычно взаимодействие циркония и с водой. Большинство металлов при контакте с водой подвергаются гальванической коррозии, которая заключается в переходе их катионов в воду. Цирконий же, как и при реакции на кислород, взаимодействуя с водой, покрывается защитной пленкой, которая не растворима. Таким образом, благодаря свойствам своей защитной пленки цирконий защищен от водной коррозии.

При нагревании цирконий начинает взаимодействовать с газами. Так при температурах выше 800° C компактный цирконий начинает активно поглощать кислород:

С азотом цирконий начинает взаимодействовать при температурах 700-800° C с образованием нитрида: ZrN.

При температуре выше 300° C цирконий начинает поглощать водород, образуя твердый раствор и гидриды ZrH и ZrH2. При 1200-1300° С в вакууме гидриды диссоциируют и весь водород может быть удален из металла.

При нагреве цирконий также начинает реагировать с неметаллами. При температуре выше 900° С происходит взаимодействие с углеродом с образованием карбида ZrC. С хлором, йодом и бромом цирконий реагирует уже при 200° С, образуя высшие галогениды ZrX4 (где X - галоген). С фтором взаимодействие происходит при обычной температуре.

Сороковой элемент таблицы Менделеева был открыт в 1783 году химиком немецкого происхождения М.Г. Клапротом. Очищенный от примесей металл цирконий удалось получить только в начале 20 века. И хотя с этого момента прошло уже почти 100 лет, металл до сих пор имеет ряд неясностей, начиная с происхождения его названия и заканчивая влиянием на здоровье человека. Почему цена за 1 грамм на него уже на протяжении нескольких десятилетий продолжают расти вверх.

Нахождение в природе

Цирконий в естественных условиях встречается только в виде оксидов и силикатов. Среди них главным образом выделяют циркон, эвдиалит, бадделеит. Стоит отметить, что металл в месторождениях всегда сопровождается гафнием . Происходит это по причине схожей кристаллической решетки металлов.

Основная доля циркониевых минералов расположена в литосфере. На одну тонну земной коры приходится в среднем 210 грамм циркона. Также соединения циркония встречаются и в составе морской воды. Но концентрация его здесь намного ниже и составляет 0,05 мг на 1000 литров.

Лидерами по количеству месторождений циркония являются Австралия (циркон), ЮАР (бадделеит), чуть меньше США, Бразилия и Индия. На Россию приходится 10% от мировых запасов.

Получение

Первоначально из окислов цирконий выделяли способом «наращивания». Циркониевую полоску устанавливали на раскалённые нити вольфрама. Под воздействием температур свыше 2000 ºС металл цирконий прилипал к поверхности нагревателя, а остальные компоненты соединения сгорали.

Такой способ требовал большого количества электроэнергии и вскоре был разработан более экономичный метод Кролля. Суть его заключается в предварительном хлорировании диоксида циркония с последующим восстановлением магнием. Но развитие способов получения циркония на этом не остановилось. Спустя некоторое время в промышленности стали применять еще более дешевое щелочное и фторидное восстановление циркония из оксидов.

Цирконий э110 состав

Йодидный цирконий

Высокопластичный и с низкими характеристиками прочности. Его получают йодидным методом основанном на способности металла образовывать соединения с йодом. При этом вредные примеси легко отделяются и получается чистый металл. Из йодидного циркония делают прутки.

Цена

Основными поставщиками циркония на мировой рынок является Австралия и ЮАР. В последнее время перевес по экспорту циркона и циркониевых минералов все больше склоняется в сторону Южно-африканской республики. Главными потребителями является Евросоюз (Италия, Франция, Германия), Китай и Япония. Торговля цирконом ведется в основном в виде ферросплавов.

За последние 10 лет спрос на металл цирконий в среднем увеличивался на 5,2% в год. Производственные мощности за это время успевали подняться на чуть больше 2%. В результате, на мировом рынке сформировался постоянный дефицит циркония, что являлось предпосылом для повышения его стоимости.

Существуют 2 основные причины роста спроса на данный металл:

  • Глобальное увеличение масштабов ядерной промышленности.
  • Активное применение циркония в производстве керамики.

Также, некоторые специалисты считают, что частично на рост котировок циркония повлияло прекращение добычи бадделеита в Австралии.

На Российском рынке вторичного металла стоимость циркония составляет от 450 до 7500 рублей за килограмм. Чем чище металл, тем цена, соответственно, дороже.

Применение

Вышеперечисленные свойства обеспечивают цирконию обширное использование в разного рода отраслей производства. Здесь выделяются следующие сферы:

  • В электротехнике циркониевый сплав с ниобием применяется в качестве сверхпроводника. Выдерживает нагрузку до 100 кА\см2. Точка перехода в сверхпроводящий режим составляет 4,2 К. Также в радиотехнической аппаратуре цирконием покрывают электронные платы с целью поглощения выделяющихся газов. Циркониевые фильтры излучения рентгеновских трубок отличаются высоким значением монохромности.
  • В ядерной энергетике используется как материал оболочек ТВЭЛов (зоны, где непосредственно осуществляется деление ядер и производство теплоэнергии) и других узлов термоядерного реактора.
  • Металлургия применяет цирконий как легирующий элемент. Данный металл является сильным раскислителем, превосходящим по этому показателю как марганец, так и кремний. Добавление в конструкционные металлы (сталь 45 , 30ХГСА) всего 0,5% циркония увеличивает их прочность в 1,5-1,8 раза. При этом дополнительно происходит улучшение протекание процесса обработки резанием. Циркон является основным компонентом корундовой керамики. По сравнению с шамотом, срок ее эксплуатации выше в 3-4 раза. Данный огнеупорный материал применяется в изготовлении тиглей и желобов сталелитейных печей.
  • В машиностроении металл служит материалом для таких изделий как насос и трубозапорная арматура, работающих в условиях воздействия агрессивных сред.
  • В пиротехнике металлы циркония используются для изготовления салютов и фейерверков. Происходит это по причине отсутствия дыма при горении, а также выделение значительного количества световой энергии.
  • В химической промышленности циркон служит сырьем для кермета - металлокерамическое покрытие, обладающее повышенной износостойкостью и невосприимчивостью к кислотам.
  • В оптике активно используют фианит - обработанный циркон с добавками скандия и других редкоземельных металлов. Фианиты имеют значительный угол преломления, что позволяет их применять в качестве материала для производства линз. В ювелирном деле фианит известен как синтетический заменитель бриллианта.
  • В военной промышленности цирконий служит наполнителем для трассирующих пуль и осветительных ракет.

Физические и химические свойства

Цирконий - на вид металл напоминающий серебро. Плотность его составляет 6506 кг\м3. Температура плавления - 1855,3 ºС. Удельная теплоемкость колеблется в пределах 0,3 Кдж\кг С. Данный металл не отличается высокой теплопроводностью. Ее значение находится на уровне 21 Вт\м С, что ниже аналогичного показателя титана в 1,9 раза. Электросопротивление циркония составляет 41-60 мкОм см и находится в прямой зависимости от количества кислорода и азота в металле.

Цирконий имеет один из самых низких показателей поперечного захвата тепловых нейтронов (0,181 барн). По этому параметру из ныне известных металлов его обходит разве что магний (0, 060 барн).

Цирконий, как и железо, парамагнитен. Его восприимчивость к магнитному полю возрастает с увеличением температуры.

Чистый цирконий не отличается высокими механическими характеристиками. Твердость его порядка 70 единиц по шкале Виккерса. Предел прочности составляет 175 МПа, что почти в 2,5 раза ниже по сравнению с углеродистой сталью обычного качества. Предел текучести 55 МПа. Цирконий относится к числу пластичных металлов с модулем упругости 96 МПа.

Все вышеперечисленные механические свойства являются условными, т.к. их значение сильно изменяется при увеличении примесей в составе циркония.

Так, повышение содержания кислорода (до 0,4%) снижает пластичность циркония до такого состояния, что проведение ковки и штамповки становится полностью невозможным. Увеличение в составе водорода до 0,001% повышает хрупкость циркония почти в 2 раза.

Цирконий устойчив к воде и большинству щелочей и кислот. Но, как и механические характеристики, коррозионностойкость находится в прямой зависимости от засорения металла такими элементами как углерод, титан и алюминий. Металл не вступает в химическую реакцию с 50% - ми растворами серной и соляной кислоты. С азотной кислотой реагирует только при температуре свыше 95 ºС. Является единственным металлом, устойчивым к щелочам, имеющим в своем составе аммиак. При переходе отметки в 780 ºС начинается активное поглощение кислорода цирконием. С азотом данные процессы протекают медленнее, но и температура при этом тоже ниже. Всего 600 ºС.

Самым активным газом в этом отношении является водород. Его проникновение вглубь металла начинается уже при 145 ºС и сопровождается настолько обильным выделением тепла, что происходит увеличение циркония в объеме. Циркониевая пыль особенно пожароопасна из-за возможности самовоспламеняться на воздухе. Стоит отметить, что данный процесс является обратимым. Полное удаление водорода осуществляется на специальном оборудовании при температуре 800 ºС.

Лечебные свойства

Как химический элемент, не оказывает какого-либо воздействия на организм человека. Наоборот, он является одним из самых биологически инертных материалов. По этому показателю цирконий опережает такие металлы как титан и нержавеющая сталь. Всем известные циркониевые браслеты, активно рекламируемые в конце 90-х годов, в реальной практике себя не проявили. Медэкстперты доказали, что самочувствие от их использования является следствием эффекта Плацебо.

Хотя с другой стороны, известно, что ношение циркониевых сережек способствует более быстрому заживлению ранки после прокалывания уха.

В 1789 г. член Берлинской академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей. Происхождение этого названия объясняют по-разному. Одни находят его истоки в арабском слове «заркун», что значит минерал, другие считают, что слово «цирконий» произошло от двух персидских слов «цар» – золото и «гун» – цвет (из-за золотистой окраски драгоценной разновидности циркона – гиацинта).

Как получали и получают цирконий

Выделенное Клапротом вещество не было новым элементом, но было окислом нового элемента, который впоследствии занял в таблице Д.И. Менделеева сороковую клетку. Пользуясь современными символами, формулу вещества, полученного Клапротом, записывают так: ZrO 2 .

Через 35 лет после опытов Клапрота известнейшему шведскому химику Йенсу Якобу Берцелиусу удалось получить металлический цирконий. Берцелиус восстановил фторцирконат калия металлическим натрием:

К 2 + 4Na → Zr + 2KF + 2NaF

и получил серебристо-серый металл.

Цирконий, образовавшийся в результате этой реакции, был хрупким из-за значительного содержания примесей. Металл не поддавался обработке и не смог найти практического применения. Но можно было предположить, что очищенный цирконий, подобно многим другим металлам, окажется достаточно пластичным.

В XIX и начале XX в. многие ученые пытались получить чистый цирконий, но все попытки долгое время заканчивались неудачей. Не помог испытанный алюмотермический метод, не привели к цели опыты, авторы которых стремились получить металлический цирконий из растворов его солей. Последнее объясняется в первую очередь высоким химическим сродством циркония к кислороду.

Для того чтобы можно было получить какой-либо металл электролизом из раствора его соли, этот металл должен образовывать одноатомные ионы. А цирконий таких ионов не образует. Сульфат циркония Zr(SO 4) 2 , например, существует только в концентрированной серной кислоте, а при разбавлении начинаются реакции гидролиза и комплексообразования. В конечном счете получается:

Zr(SO 4) 2 + Н 2 О → (ZrO)SO 4 + H 2 SO 4 .

В водном растворе гидролизуется и хлористый цирконий:

ZrCl 4 + Н 2 О → ZrOCl 2 + 2HCl.

Некоторые исследователи считали, что им удалось-таки получить цирконий электролизом растворов, но они были введены в заблуждение видом продуктов, осевших на электродах. В одних случаях это были действительно металлы, но не цирконий, а никель или медь, примеси которых содержались в циркониевом сырье; в других – внешне похожая на металл гидроокись циркония.

Лишь в 20-х годах нашего столетия (через 100 лет после того, как Берцелиус получил первые образцы циркония!) был разработан первый промышленный способ получения этого металла.

Это метод «наращивания», разработанный голландскими учеными ван Аркелем и де Буром. Суть его заключается в том, что летучее соединение (в данном случае тетрайодид циркония ZrI 4) подвергается термическому распаду в вакууме и на раскаленной нити вольфрама откладывается чистый металл.

Этим способом был получен металлический цирконий, поддающийся обработке – ковке, вальцовке, прокатке – примерно так же легко, как медь.

Позже металлурги обнаружили, что пластические свойства циркония зависят главным образом от содержания в нем кислорода. Если в расплавленный цирконий проникнет свыше 0,7% кислорода, то металл будет хрупким из-за образования твердых растворов кислорода в цирконии, свойства которых сильно отличаются от свойств чистого металла.

Метод наращивания получил сначала некоторое распространение, но высокая стоимость циркония, полученного этим методом, сильно ограничивала области его применения. А свойства циркония оказались интересными. (О них ниже.) Назрела необходимость в разработке нового, более дешевого способа получения циркония. Таким методом стал усовершенствованный метод Кролля.

Метод Кролля позволяет получать цирконий при вдвое меньших затратах, чем по методу наращивания. Схема этого производства предусматривает две основные стадии: двуокись циркония хлорируется, а полученный четыреххлористый цирконий восстанавливается металлическим магнием под слоем расплавленного металла. Конечный продукт – циркониевая губка переплавляется в прутки и в таком виде направляется потребителю.

Двуокись циркония

Пока ученые искали способ получения металлического циркония, практики уже начали применять некоторые из его соединений, в первую очередь двуокись циркония. Свойства двуокиси циркония в значительной мере зависят от того, каким способом она получена. ZrO 2 , образующаяся при прокаливании некоторых термически нестойких солей циркония, нерастворима в воде. Слабо прокаленная двуокись хорошо растворяется в кислотах, но, сильно прокаленная, она становится нерастворимой в минеральных кислотах, исключая плавиковую.

Еще одно интересное свойство: сильно нагретая двуокись циркония излучает свет настолько интенсивно, что ее можно применять в осветительной технике. Этим ее свойством воспользовался известный немецкий ученый Вальтер Герман Нернст . Стержни накаливания в лампе Нернста были изготовлены из ZrO 2 . В качестве источника света раскаленная двуокись циркония иногда и сейчас служит при лабораторных опытах.

В промышленности двуокись циркония первыми применили силикатные производства и металлургия. Еще в начале нашего века были изготовлены цирконовые огнеупоры, которые служат в три раза дольше обычных. Огнеупоры, содержащие добавку ZrO 2 , позволяют провести до 1200 плавок стали без ремонта печи. Это много.

Цирконовые кирпичи потеснили шамот (широко распространенный огнеупорный материал на основе глины или каолина) при выплавке металлического алюминия, и вот почему. Шамот сплавляется с алюминием, и на его поверхности образуются наросты шлака, которые надо периодически счищать. А цирконовые кирпичи расплавленным алюминием не смачиваются. Это позволяет печам, футерованным цирконом, непрерывно работать в течение десяти месяцев.

Значительные количества двуокиси циркония потребляют производства керамики, фарфора и стекла.

Список отраслей промышленности, нуждающихся в двуокиси циркония, можно было бы продолжить еще и еще. Но посмотрим, на что пригодился металлический цирконий, который так долго не удавалось получить.

Цирконий и металлургия

Самым первым потребителем металлического циркония была черная металлургия. Цирконий оказался хорошим раскислителем. По раскисляющему действию он превосходит даже марганец и титан. Одновременно цирконий уменьшает содержание в стали газов и серы, присутствие которых делает ее менее пластичной.

Стали, легированные цирконием, не теряют необходимой вязкости в широком интервале температур, они хорошо сопротивляются ударным нагрузкам. Поэтому цирконий добавляют в сталь, идущую на изготовление броневых плит. При этом, вероятно, учитывается и тот факт, что добавки циркония положительно сказываются и на прочности стали. Если образец стали, не легированной цирконием, разрушается при нагрузке около 900 кг, то сталь той же рецептуры, но с добавкой всего лишь 0,1% циркония выдерживает нагрузку уже в 1600 кг.

Значительные количества циркония потребляет и цветная металлургия. Здесь его действие весьма разнообразно. Незначительные добавки циркония повышают теплостойкость алюминиевых сплавов, а многокомпонентные магниевые сплавы с добавкой циркония становятся более коррозионно-устойчивыми. Цирконий повышает стойкость титана к действию кислот. Коррозионная стойкость сплава титана с 14% Zr в 5%-ной соляной кислоте при 100°C в 70 раз (!) больше, чем у технически чистого титана. Иначе влияет цирконий на молибден. Добавка 5% циркония удваивает твердость этого тугоплавкого, но довольно мягкого металла.

Есть и другие области применения металлического циркония. Высокая коррозийная стойкость и относительная тугоплавкость позволили использовать его во многих отраслях промышленности. Фильеры для производства искусственного волокна, детали горячей арматуры, лабораторное и медицинское оборудование, катализаторы – вот далеко не полный перечень изделий из металлического циркония.

Однако не металлургия и не машиностроение стали основными потребителями этого металла. Огромные количества циркония потребовались ядерной энергетике.

Проблема циркония «реакторной чистоты»

В ядерную технику цирконий пришел не сразу. Для того чтобы стать полезным в этой отрасли, металл должен обладать определенным комплексом свойств. (Особенно, если он претендует на роль конструкционного материала при строительстве реакторов.) Главное из этих свойств – малое сечение захвата тепловых нейтронов. В принципе эту характеристику можно определить как способность материала задерживать, поглощать нейтроны и тем самым препятствовать распространению цепной реакции.

Величина сечения захвата нейтронов измеряется в барнах. Чем больше эта величина, тем больше нейтронов поглощает материал и тем сильнее препятствует развитию цепной реакции. Естественно, что для реакционной зоны реакторов выбираются материалы с минимальным сечением захвата.

У чистого металлического циркония эта величина равна 0,18 барна. Многие более дешевые металлы имеют сечениа захвата такого же порядка: у олова, например, оно равно 0,65 барна, у алюминия – 0,22 барна, а у магния – всего 0,06 барна. Но и олово, и магний, и алюминий легкоплавки и нежаропрочны; цирконий же плавится лишь при 1860°C.

Казалось, единственное ограничение – довольно высокая цена элемента №40 (хотя для этой отрасли денег жалеть не приходится), но возникло другое осложнение.

В земной коре цирконию всегда сопутствует гафний. В циркониевых рудах, например, его содержание обычно составляет от 0,5 до 2,0%. Химический аналог циркония (в менделеевской таблице гафний стоит непосредственно под цирконием) захватывает тепловые нейтроны в 500 раз интенсивнее циркония. Даже незначительные примеси гафния сильно сказываются на ходе реакции. Например, 1,5%-ная примесь гафния в 20 раз повышает сечение захвата циркония.

Перед техникой встала проблема – полностью разделить цирконий и гафний. Если индивидуальные свойства обоих металлов весьма привлекательны, то их совместное присутствие делает материал абсолютно непригодным для атомной техники.

Проблема разделения гафния и циркония оказалась очень сложной – химические свойства их почти одинаковы из-за чрезвычайного сходства в строении атомов. Для их разделения применяют сложную многоступенчатую очистку: ионный обмен, многократное осаждение, экстракцию.

Все эти операции значительно удорожают цирконий, а он и без того дорог: пластичный металл (99,7% Zr) во много раз дороже концентрата. Проблема экономичного разделения циркония и гафния еще ждет своего решения.

И все-таки цирконий стал «атомным» металлом.

Об этом, в частности, свидетельствуют такие факты. На первой американской атомной подводной лодке «Наутилус» был установлен реактор из циркония. Позже выяснилось, что выгоднее делать из циркония оболочки топливных элементов, а не стационарные детали активной зоны реактора.

Тем не менее производство этого металла увеличивается из года в год, и темпы этого роста необыкновенно высоки. Достаточно сказать, что за десятилетие, с 1949 по 1959 г., мировое производство циркония выросло в 100 раз! По американским данным, в 1975 г. мировое производство циркония составило около 3000 т.

Цирконий, воздух и вода

В предыдущих главах почти ничего не рассказано о химических свойствах элемента №40. Главная причина этого – нежелание повторять многие статьи и монографии об элементах-металлах. Цирконий – типичнейший металл, характерный представитель своей группы (и подгруппы) и своего периода. Ему свойственна довольно высокая химическая активность, которая существует, однако, в скрытой форме.

О причинах этой скрытности и отношении циркония к воде и компонентам воздуха стоит рассказать подробнее.

Компактный металлический цирконий внешне очень похож на сталь. Он ничем не проявляет своей химической активности и в обычных условиях по отношению к атмосферным газам ведет себя исключительно инертно. Кажущаяся химическая пассивность циркония объясняется довольно традиционно: на его поверхности всегда есть невидимая окисная пленка, предохраняющая металл от дальнейшего окисления. Чтобы полностью окислить цирконий, надо повысить температуру до 700°C. Только тогда окисная пленка частично разрушится, а частично растворится в металле.

Итак, 700°C – тот температурный предел, за которым кончается химическая стойкость циркония. К сожалению, и эта цифра слишком оптимистична. Уже при 300°C цирконий начинает более активно взаимодействовать с кислородом и другими компонентами атмосферы: водяными парами (образуя двуокись и гидрид), с углекислым газом (образуя карбид и двуокись), с азотом (продукт реакции – нитрид циркония). Но при температурах ниже 300°C окисная пленка – надежный щит, гарантирующий высокую химическую стойкость циркония.

Иначе, чем компактный металлический цирконий, ведут себя на воздухе его порошок и стружка. Это пирофорные вещества, которые легко самовозгораются на воздухе даже при комнатной температуре. При этом выделяется много тепла. Циркониевая пыль в смеси с воздухом способна даже взрываться.

Интересно отношение циркония к воде. Явные признаки взаимодействия металла с водой долгое время не видны. Но на поверхности смоченного водой циркония происходит не совсем обычный для металлов процесс. Как известно, многие металлы под действием воды подвергаются гальванической коррозии, которая заключается в переходе их катионов в воду. Цирконий же и под действием воды окисляется и покрывается защитной пленкой, которая в воде не растворяется и предотвращает дальнейшее окисление металла.

Перевести ионы циркония в волу проще всего растворением некоторых его солей. Химическое поведение четырехвалентного иона циркония в водных растворах очень сложно. Оно зависит от множества химических факторов и процессов, протекающих в водных растворах.

Существование иона Zr +4 «в чистом виде» маловероятно. Долгое время, считали, что в водных растворах цирконий существует в виде ионов цирконила ZrO +2 . Более поздние исследования показали, что в действительности в растворах кроме цирконил-ионов присутствует большое число различных комплексных – гидратированных и гид-ролизованных – ионов циркония. Их общая сокращенная формула (4p m )+ .

Такое сложное поведение циркония в растворе объясняется большой химической активностью этого элемента. Препаративный цирконий (очищенный от ZrO 2) вступает во множество реакций, образуя простые и сложные соединения. «Секрет» повышенной химической активности циркония кроется в строении его электронных оболочек. Атомы циркония построены таким образом, что им свойственно стремление присоединить к себе как можно больше других ионов; если таких ионов в растворе недостаточно, то ионы циркония соединяются между собой и происходит полимеризация. При этом химическая активность циркония утрачивается; реакционная способность полимеризованных ионов циркония намного ниже, чем неполимеризованных. При полимеризации уменьшается и активность раствора в целом.

Такова в общих чертах «визитная карточка» одного из важных металлов нашего времени – элемента №40, циркония.

«Несовершенные алмазы»

В средние века были хорошо известны ювелирные украшения из так называемых несовершенных алмазов. Несовершенство их заключалось в меньшей, чем у обычного алмаза, твердости и несколько худшей игре цветов после огранки. Было у них и другое название – матарские (по месту добычи – Матаре, району острова Цейлон). Средневековые ювелиры не знали, что используемый ими драгоценный минерал – это монокристаллы циркона, основного минерала циркония. Циркон бывает самой различной окраски – от бесцветного до кроваво-красного. Красный драгоценный циркон ювелиры называют гиацинтом. Гиацинты известны очень давно. По библейскому преданию, древние первосвященники носили на груди 12 драгоценных камней и среди них гиацинт.

Редкий ли?

В виде различных химических соединений цирконий широко распространен в природе. Его содержание в земной коре довольно велико – 0,025%, по распространенности он занимает двенадцатое место среди металлов. Несмотря на это, цирконий пользуется меньшей популярностью, чем многие из действительно редких металлов. Это произошло из-за крайней рассеянности циркония в земной коре и отсутствия крупных залежей его природных соединений.

Природные соединения циркония

Их известно более сорока. Цирконий присутствует в них в виде окислов или солей. Двуокись циркония, бадделеит ZrO 2 , и силикат циркония, циркон ZrSiO 4 имеют наибольшее промышленное значение. Самые мощные из разведанных залежей циркона и бадделеита расположены в США, Австралии, Бразилии. Индии, Западной Африке.

СССР располагает значительными запасами цирконового сырья, находящимися в различных районах Украины, Урала и Сибири.

PbZrO 3 – пьезоэлектрик

Пьезокристаллы нужны для многих радиотехнических приборов: стабилизаторов частот, генераторов ультразвуковых колебаний и других. Иногда им приходится работать в условиях повышенных температур. Кристаллы цирконата свинца практически не изменяют своих пьезоэлектрических свойств при температуре до 300°C.

Цирконий и мозг

Высокая коррозийная стойкость циркония позволила применить его в нейрохирургии. Из сплавов циркония делают кровоостанавливающие зажимы, хирургический инструмент и иногда даже нити для наложения швов при операциях мозга.


Top