Термохимическое аккумулирование. Системы аккумулирования тепловой энергии

Неравномерное потребление горячей воды требует синхронного изменения отпуска теплоты со станции или соответствующего приготовления ее на месте потребления. Ввиду неосуществимости полного соответствия выработки теплоты на горячее водоснабжение и его потребления наблюдается постоянное нарушение отопительно-вентиляционных режимов, требующих создания на станции излишних резервов теплоприготовительного оборудования.

Рис. 3.10. Графики расхода теплоты на горячее водоснабжение:
а – суточный; б – интегральный; 1 – изменение расхода теплоты по часам суток; 2 – среднечасовой расход теплоты за сутки; 3 – фактическое потребление теплоты; 4 – отпускаемая теплота

Установка аккумуляторов горячей воды дает возможность выровнять нагрузку станционных водонагревателей и тем самым уменьшить запас пиковой мощности на тепловой станции, вследствие чего обеспечивается меньшая разрегулировка расходов теплоты на отопление и вентиляцию. Аккумуляторы на абонентских вводах позволяют устранить колебания температуры горячей воды при минимальных и максимальных водоразборах и уменьшить расчетную теплопроизводительность местных подогревателей.

Емкость аккумулятора определяется с помощью интегрального графика, который строится на основе заданного суточного расхода теплоты (рис. 3.10). Для построения интегрального графика необходимо определить по суточному графику произведение часового расхода теплоты Q i по соответствующей продолжительности n i использования теплоты. Полученное произведение, представляющее расход теплоты за время n i , на интегральном графике откладывается на ординате в конце того же отрезка времени. Последующие значения расходов теплоты Q i n i за последующие промежутки времени n i на интегральном графике суммируются с предыдущими. В итоге получается ломаная линия 3 фактического потребления теплоты, каждая ордината этого графика выражает общий расход теплоты от начала потребления до рассматриваемого момента. Ордината графика фактического потребления теплоты в конце суток показывает расход теплоты за сутки.



Так как теплота из тепловых сетей поступает равномерно и непрерывно, тo график сообщенной потребителю теплоты выражается прямой линией 4. Тангенс угла наклона графика сообщенной теплоты численно равен среднечасовому расходу теплоты за сутки

. (3.1)

Меньший наклон участков линии 3 по сравнению с линией 4 означает, что поступление теплоты из сетей превосходит фактическое потребление и, наоборот, при большем наклоне участков линии 3 фактическое потребление теплоты превосходит его поступление из тепловых сетей, что при отсутствии аккумуляторов недопустимо. Разность ординат линий 3 и 4 показывает количество неспользованной теплоты из тепловых сетей, которое могло быть накоплено в аккумуляторе. Если неиспользуемая теплота аккумулируется, то разность ординат графиков поступления и потребления теплоты в каждый момент времени указывает на наличие запаса теплоты в аккумуляторе. Ордината Q макс количественно выражает наибольший запас теплоты.

При определении необходимого запаса теплоты в аккумуляторе среднечасовой расход теплоты, кВт, найденный по формуле (3.1), должен быть не менее значения

, (3.2)

где G и – расход горячей воды за сутки наибольшего водопотребения, м 3 /сут; r – плотность воды, кг/м 3 ; с – теплоемкость воды, кДж/(кг×°С); t г – средняя температура горячей воды в трубопроводах горячего водоснабжения; Т – время потребления горячей воды в сутки, ч; Q т.п – потери теплоты в подающих и циркуляционных трубопроводах, кВт.

Расход горячей воды за сутки наибольшего водопотребления находится по формуле

, (3.3)

где g и – норма расхода горячей воды за сутки наибольшего водопотребления, л/сут; m – количество потребителей (жителей) в здании или группе зданий.

Для жилых домов, общежитий, гостиниц, санаториев, больниц, школ и детских учреждений время потребления горячей воды в сутки принимают 24 ч. Для остальных общественных зданий это время принимают равным числу часов работы их в сутки, но не менее 10 ч, а при наличии аккумуляторов – по числу часов зарядки аккумуляторов. Для вспомогательных зданий промышленных предприятий время потребления горячей воды должно быть равно продолжительности зарядки аккумуляторов в смену.

При отсутствии суточных графиков расхода теплоты на горячее водоснабжение интегральный график может быть построен по безразмерным суточным графикам, приведенным для различных категорий потребителей в справочной литературе. В безразмерных графиках ордината 100% расхода теплоты соответствует среднечасовому расходу теплоты, определенному по формуле (3.2).

Применение аккумуляторов может сократить время потребления теплоты из тепловых сетей. Момент времени и продолжительность отключения тепловых сетей выбирается в зависимости от характера изломов линий интегрального графика. Например, для интегральных графиков на рис. 3.11 целесообразно выбрать продолжительность отключения сетей на время n 1 и n 2 . В период прекращения поступления теплоты из тепловых сетей горячее водоснабжение производится только из аккумулятора. Продолжительность отключения сетей подбирается так, чтобы запас теплоты в начале и в конце суток был одинаковым.

Рис. 3.11. Варианты аккумулирования теплоты:
1 – фактическое потребление теплоты; 2 – поступление теплоты из тепловых сетей;
n 1 и n 2 – продолжительность отключения тепловых сетей; n – продолжительность зарядки аккумулятора

В период пользования горячей водой запас теплоты в аккумуляторе изменяется от максимального Q м aкс до минимального Q мин значений. Если теплота аккумулируется при переменном объеме воды с постоянной ее температурой, то необходимая емкость акмулятора, м 3 , находится из выражения

, (3.4)

где Q м aкс – запас теплоты, кВт×ч.

Если теплота аккумулируется при постоянном объеме воды за счет изменения ее температуры, то емкость аккумулятора определяется по формуле

, (3.5)

где t макс и t мин – максимальная и минимальная температуры горячей воды, °С.

В аккумуляторе постоянного объема накопление теплоты осуществляется за счет увеличения нагрева воды. Следовательно, большему и меньшему запасу теплоты в аккумуляторе на интегральном графике (рис. 3.11) соответствуют максимальная и минимальная температуры воды. Наибольшая температура воды в аккумуляторе не должна превышать 75 °С, а наименьшая – быть не ниже 40 °С.

При наличии в жилых и общественных зданиях автоматизированных систем горячего водоснабжения, а в производственных зданиях душевых сеток (не более десяти) применение аккумуляторов не обязательно.

Аккумулирование тепловой энергии (АТЭ) происходит благодаря широкому спектру технологий. В зависимости от конкретной технологии, оно дает возможность хранить и использовать избыточную тепловую энергию в течение нескольких часов, дней или даже нескольких месяцев в масштабах, характерных для использования отдельными пользователями, строительства (в том числе – крупномасштабного), использования в рамках округа, города или региона. Примеры использования – балансировка спроса на энергию между дневным и ночным временем, хранение летнего тепла для отопления зимой или зимнего холодного воздуха для кондиционирования воздуха. Среди средств хранения – емкости для хранения воды или льда, массы материнской почвы или коренная порода, связанная с теплообменниками с помощью буровых скважин, глубоколежащие водоносные горизонты, находящиеся между непроницаемыми слоями; мелкие ямы, заполненные гравием и водой и изолированные в верхней части; также средствами хранения могут быть эвтектические растворы и солевые грелки.

Другими источниками тепловой энергии для хранения могут быть тепло или холод, произведенный тепловыми насосами во внепиковые периоды производства дешевой электроэнергии, практика, известная как ограничение пика нагрузки; тепло от теплоэлектроцентралей; тепло, произведенное возобновляемыми источниками энергии, превышающими потребности электросетей, и бросовое тепло от промышленных процессов. Как сезонное, так и кратковременное хранение тепла считается важным средством для дешевого балансирования высокой доли разнообразных возобновляемых источников энергии и интеграции электроэнергетического и теплоэнергетического секторов в энергосистемах для достижения 100 % доли возобновляемой энергии.

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Технология расплава солей

Явная теплота расплава солей также используется для хранения солнечной энергии при высоких температурах. Расплавы солей могут применяться в качестве метода аккумулирования остаточной тепловой энергии. На данный момент это – коммерческая технология для хранения тепла, собранного гелиоконцентраторами (к примеру, с СЭС башенного типа или параболоцилиндров). Тепло позднее может быть преобразовано в перегретый пар для питания обычных паровых турбин и выработки электричества в плохую погоду или ночью. Это было продемонстрировано в 1995—1999 годах в рамках проекта «Solar Two». Оценки 2006 года предсказывали годовую эффективность в 99 %, ссылаясь на сравнение энергии, сохраненной в виде тепла перед преобразованием в электричество и преобразования тепла в электричество напрямую. Используются различные эвтектические смеси солей (к примеру, нитрат натрия, нитрат калия и нитрат кальция). Использование таких систем в качестве среды переноса тепла заметно в химической и металлургической промышленности.

Соль плавится при 131C (268F). Она хранится в жидком состоянии при 288C (550F) в изолированных «холодных» емкостях для хранения. Жидкая соль перекачивается через панели солнечного коллектора, где сфокусированное солнечное тепло нагревает ее до 566C (1 051F). Затем оно отправляется в горячую емкость для хранения. Сама изоляция емкости может использоваться для хранения тепловой энергии в течение недели. В случае потребности в электричестве, горячий расплав солей перекачивается в обычный парогенератор для производства перегретого пара и запуска стандартной турбогенераторной установки, используемой на любой угольной, нефтяной или атомной электростанции. Турбина мощностью в 100 МВт потребует емкость высотой в 9,1 м (30 футов) и диаметром 24 м (79 футов) для ее запуска в течение четырех часов по подобному принципу.

В разработке находится единый бак с разделительной плитой для сохранения и холодного, и горячего расплава солей. Гораздо более экономичным будет достижение на 100 % большего количества хранения энергии на единицу объема в сравнении со сдвоенными емкостями, так как емкость для хранения расплава солей достаточно дорога из-за сложной конструкции. Солевые грелки также используются для хранения энергии в расплавах солей.

Несколько параболоцилиндрических электростанций в Испании и «Solar Reserve» — разработчик солнечных электростанций башенного типа использует этот концепт для хранения тепловой энергии. Электростанция Солана в США может хранить в расплавах солей энергию, которая вырабатывается 6 часов. Летом 2013 года на электростанции «Gemasolar Thermosolar», работающей и как гелиоконцентратор, и как электростанция на расплавах солей в Испании, впервые удалось непрерывного производства электричества в течение 36 дней.

Накопление тепла в емкостях и пещерах в скалах

Паровой аккумулятор состоит из изолированного стального резервуара высокого давления, содержащего горячую воду и пар под давлением. В качестве метода для хранения тепла он используется для того, чтобы уравновешивать производства тепла изменчивыми или стабильными источниками при изменяющемся спросе на тепло. Паровые аккумуляторы могут стать действительно необходимыми для накопления энергии в проектах, связанных с тепловой солнечной энергией.

Крупные накопители широко применяются в Скандинавии для хранения тепла в течение нескольких дней, разделения производства тепла и энергия и помощи в удовлетворении пикового спроса. Исследовалось (и оказалось экономически выгодным) межсезонное аккумулирование тепла в пещерах.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур. На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр. фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Рабочая среда, как правило – вода или пар, используется для передачи тепла к и от сплава на границе растворимости. Теплопроводность таких сплавов зачастую выше (до 400 Вт/м*К), чем у конкурирующих технологий, что означает более быструю возможную «загрузки» и «разгрузки» теплового хранилища. Технология еще не реализована для использования в промышленных масштабах.

Электротермические накопители

Электроаккумуляционные печи – обычное дело для европейских домов с регистрацией электропотребления с учетом времени суток (чаще всего использующие более дешевое электричество ночью). Они состоят из керамических кирпичей высокой плотности или феолитовых блоков, нагретых электричеством до высоких температур, которые могут иметь или не иметь хорошую изоляцию и контролируют высвобождение тепла через определенное число часов.

Технологии с использованием льда

Разрабатывается ряд технологий, где лед производится во внепиковые периоды и позднее используется для охлаждения. К примеру, кондиционирование воздуха может быть экономичнее за счет использования дешевого электричества ночью для заморозки воды и последующего использования холодильной мощности льда днем для уменьшения количества энергии, требуемой для поддержания кондиционирования воздуха. Аккумулирование тепловой энергии с применением льда использует высокую теплоту плавления воды. Исторически лед перевозили с гор в города, чтобы использовать его, как охладитель. Одна метрическая (= 1 м3) тонна воды может хранить 334 миллиона джоулей (Дж) или 317 000 Британских термических единиц (93 кВт*ч). Относительно небольшой накопитель может хранить достаточно льда, чтобы охлаждать крупное здание целый день или неделю.

Помимо применения льда для прямого охлаждения, он также используется в тепловых насосах, на которых работают системы отопления. В этих сферах изменения энергии фазы обеспечивают очень серьезный теплопроводный слой, близкий к нижнему порогу температур, при котором может работать тепловой насос, использующий теплоту воды. Это позволяет системе переносить серьезнейшие отопительные нагрузки и увеличивать промежуток времени, в течение которого элементы источников энергии могут возвращать тепло в систему.

Сверхпроводящий накопитель энергии

В этом процессе используется разжижение воздуха или азота, как способ хранения энергии.

Первая система накопления энергии при сверхнизких температурах, использующая жидкий воздух в качестве накопителя энергии, а низкопробное бросовое тепло – для запуска повторного теплового расширения воздуха, работает на электростанции в городе Слау (Великобритания) с 2010 года.

Технологии на основе горячего кремния

Твердый или расплавленный силикон предлагает гораздо более высокие температуры хранения, чем соли, а значит – и большие емкость и КПД. Он был исследован, как, возможно, гораздо более эффективная технология хранения энергии. Кремний способен хранить более 1 МВт*ч энергии на м3 при температуре в 1400C.

Накопление электричества после накачки теплом

В случае накопления электричества после накачки теплом (НЭПНТ) двухсторонняя теплонасосная система используется для сохранения энергии за счет разницы температур между двумя накопителями тепла.

Система от «Isentropic»

Система, которая была разработана ныне обанкротившейся британской фирмой «Isentropic», работала так, как указано ниже. Она включала в себя два изолированных контейнера, заполненных измельченной породой или гравием; нагретый сосуд, хранящий тепловую энергию при высокой температуре и давлении, и холодный сосуд, хранящий тепловую энергию при низкой температуре и давлении. Сосуды соединены трубами вверху и внизу, а вся система заполнена инертным газом аргоном.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

(2 оценок, среднее: 5,00 из 5)

Устройства для преобразования возобновляемой энергии по сравнению с установками на обычном и ядерном топлив различаются по требованиям к аккумулированию и передаче на расстояние. Такие особенности возобновляемых источников, как низкая интенсивность и рассеянность, делают для них предпочтительным децентрализованное потребление. Более того, энергию от этих источников часто не нужно будет передавать на большие расстояния, так как источники уже распределены в пространстве.

Так как полезность устройств для преобразования возобновляемой энергии основана на переработке независимых от нас естественных потоков, существует проблема приведения в соответствие выработки энергии и потребности в ней в рамкам временного спроса, т.е. в выравнивании скорости потребления энергии. Последняя изменяется во времени в масштаба месяцев (например, для обогрева жилищ в зонах умеренного климата), дней (например, для искусственного освещения) и даже секунд (в моменты включения крупных нагрузок). в противоположность энергетике на традиционном топливе получаемая из окружающей среды мощность возобновляемых источников нам не подконтрольна.

У нас есть выбор: либо подгонять нагрузку к интенсивности. доступной для преобразования возобновляемой энергии, либо накапливать энергию для последующего использования. У нас на выбор самые различные способы аккумулирования:

¾ химические;

¾ тепловые;

¾ электрические, в форме потенциальной или кинетической энергии.

Аккумулирование энергии - не новая концепция в энергетике. Ископаемые топлива в этом смысле являются эффективным аккумулятором с высокой плотностью энергии. Однако по мере того, как источники топлива становятся все менее доступными и все более дорогими, появляется необходимость в развитии других методов аккумулирования, и в качестве одного из них - производства возобновляемого топлива.

5.2. Химическое аккумулирование.

Энергия может удерживаться в связях многих химических элементов и выделятся в процессе экзотермических реакций, из которых наиболее известно горение. Иногда необходимо применить для запуска такой реакции предварительной нагревание или катализаторы (например, энзимы). Биологические компоненты представляют особый случай. Здесь речь идет лишь о неорганических соединениях, являющихся наиболее распространенными аккумуляторами, энергия которых выделяется при сгорании в воздухе.

Водород. Может быть получен путем электролиза воды с помощью любого источника тока. В виде газа он может быть накоплен, передан на расстояние и сожжен для получения тепловой энергии. Единственным продуктом сгорания водорода является вода: не образуется никаких загрязняющих веществ. Энтальпия образования водорода Н=-242 кДж/моль, т.е. при образовании 1 моля Н2 О (18 г) выделяется 242 Дж тепловой энергии. Хранить водород в больших количествах непросто. Наиболее обещающий способ - использование подземных каверн, подобных тем, из которых добывается природный газ. Но хранение газа - даже под высоким давлением - требует значительных объемов. Необходимо заметить, что водород можно передавать через разветвленную сеть трубопроводов, используемых сейчас для подачи природного газа во многих странах мира. Кроме того, существует возможность с большой эффективностью использовать его для

Рис. 5.1 Грунтовый аккумулятор тепла

непосредственного получения электроэнергии с помощью топливных элементов.

Аммиак. В отличие от воды аммиак может быть разложен на составляющие элементы при доступных температурах:

N2 + 3H2 2NH3

В сочетании с принципом теплового двигателя эта реакция может стать основой наиболее эффективного способа непрерывного получения электроэнергии за счет использования солнечного тепла.

5.3. Аккумулирование тепловой энергии.

Использование низкотемпературного тепла составляет существенную часть мирового потребления энергии. Существенно не обязательно использовать для обогрева высокотемпературные источники энергии, которые гораздо лучше сберечь для других целей. Для обогрева жилищ больше подходят пассивные приемник солнечного тепла в сочетании с тепловыми аккумуляторами, поддерживающими комфортные условия по ночам и в пасмурные дни. Более того, именно в тех случаях, когда, энергия используется при низких температурах, характерных для среды,

ее особенно ценно

накапливать в форме тепла. Тепловое аккумулирование плодотворно и при использовании "отходов"

тепла, возникающих в процессе работы различных установок. Запастись на три месяца теплом для обогрева жилого дома - вполне решаемая задача. Правда при этом важно не только сделать хороший проект, но и грамотно его реализовать.

В частности, необходимо качественно выполнить теплоизоляцию и предохранить дом от сырости, снабдить его управляемой системой вентиляции (возможно, с рециркуляцией тепла), использовать все "отходы" тепла от освещения, приготовления пищи, жизнедеятельности самих обитателей. Существуют примеры подобных высокотехнологичных домов, обладающих кроме всего прочего прекрасной архитектурой и создающих идеальные условия для жизни. Отметим, что в качестве аккумулирующей тепло среды предпочтительнее использовать вместо воды скальные породы.

На рис.5.1. показан пример использования аккумулятора тепла в виде грунтового теплообменника.

В течение короткого периода продолжительностью до четырех дней сами здания можно использовать в качестве аккумуляторов тепла. При проектирование зданий для стран с жарким климатом важное применение по аналогии с созданием запасов тепла может найти аккумулирование холода.

Известно, что использование аккумулирования тепла в широком масштабе высокоширотными морскими странами позволило бы решить проблемы снабжения теплом за счет развития ветро- и волноэнергетики. Оба эти источника наиболее производительны зимой, а их мощность, хотя и изменяется периодически час от часу, редко существенно падает более чем на несколько дней. Значительно большей теплоемкостью в ограниченном интервале температур по сравнению с системами использующие поглощение тепла, обладают материалы, при изменении температуры изменяющие фазовое состояние. Например, глауберову соль (Na2 SO4 10H2 O) можно использовать для аккумулирования тепла уже при комнатной температуре. При 32о С она разлагается на насыщенный раствор N2 SO4 с выпадением части Na2 SO4 в

осадок. Эта реакция обратима и дает 250 кДж/кг ≈ 650 МДж/м3 тепловой энергии. Так как большая часть стоимости аккумуляторов для обогрева зданий связана со стоимостью конструкций, такие аккумуляторы могут оказаться дешевле, чем водяные емкости с более низкой удельной плотностью запасания

Дмитрий Белкин

Утепление частного дома. Часть 3

Аккумулирование тепла - залог комфорта в жилище

Итак, в прошлой статье мы рассматривали разные строительные материалы, из которых мы могли бы построить наш дом. Однако, вопроса тепла в доме мы коснулись очень и очень поверхностно. Таким образом, теоретическая часть еще не закончена! Она в самом разгаре! В этой статье я постараюсь доступно рассказать о более серьезных вопросах теплоизоляции жилища. Кстати говоря, в процессе изложения я опять слишком вольно обращался с терминами. Давайте договоримся, что утепление - это набор мер по повышению температуры в помещении, то есть, например, устройство отопления, а теплоизоляция - набор мер по снижению теплопередачи строительных конструкций. Таким образом, предметом этой статьи будет именно теплоизоляция. Причем, теплоизоляция нужна только там, где устроено отопление, поскольку затрудняет выход тепла наружу, и совершенно не защищает от холода, как некоторые думают.

При строительстве теплого дома нужно иметь в виду, что отдельно стоящий дом теряет через стены по разным оценкам всего от 30 до 40 процентов тепла. Это значит, что, если дом уже построен и его характеристики по сохранению тепла вас не удовлетворяют, то дополнительная теплоизоляция стен может и не помочь. В первую очередь, теплоизолировать нужно стены, имеющие недостаточно малую теплопередачу, например, построенные из материалов с высокой теплопроводностью (силикатный кирпич, цементные или бетонные блоки), или стены, имеющие недостаточную толщину. Так, если у вас холодный дом, построенный из дерева, то такие стены достаточно просто проконопатить по-аккуратнее, а если вы живете в холодном доме из пенобетонных или керамзитобетонных блоков, то стоит в первую очередь направить средства на теплоизоляцию потолков и окон.

Теперь затронем основной вопрос этой статьи, а именно процесс накопления тепла стенами. Представим себе ситуацию, когда внутри нашего помещения температура плюсовая, а снаружи минусовая. Таким образом можем считать, что наша стена разделяет две среды с разными температурами. При этом, как мы только что договорились, теплый воздух стремится выйти наружу. Здравый смысл говорит нам, что, если одна поверхность стены имеет температуру, например -20, а вторая поверхность, напротив, имеет температуру + 20, то где-то должен быть и ноль. Судя по всему, при наших условиях этот ноль градусов находится внутри стены.

Для простоты, давайте считать, что ровно посередине. В свою очередь, это значит, что половина стены, в наших условиях, имеет температуру выше нуля. Предположим, затем, что наша стена весит тонну. Следовательно, половина стены весит ровно половину тонны. Самое приятное, что между этой теплой половиной стены и воздухом в комнате происходит процесс теплопередачи, и, если мы удалим весь теплый воздух из нашего помещения, откроем форточку, например, то после закрытия форточки более теплая стена будет отдавать воздуху свое накопленное тепло, притом, тепла будет отдано тем больше, чем будет тяжелее стена и, соответственно, больше сохраненная ей энергия.

Я надеюсь, что теперь понятно, что теплоизоляция внешней стороны стены значительно более предпочтительна, чем теплоизоляция внутри помещения. Действительно, внешняя теплоизоляция смещает ноль градусов по направлению к внешнему краю стены, увеличивая массу теплой части стены, в то время как теплоизоляция внутренней части стены напротив, не дает ей нагреваться и аккумулировать тепло. Помещение с внутренней теплоизоляцией характерно тем, что очень быстро нагревается и так же быстро выветривается при открытой форточке. Тепло-то ведь стенами не накоплено!

Конечно, говорить об аккумулировании тепла внешними стенами мы можем с известной долей условности. Дело в том, что физика процесса теплопередачи говорит, что внешняя стена всегда отдает тепло, а это значит, что и тепло она не аккумулирует, поскольку постоянно его тратит. Это как аккумулятор, который мы постоянно заряжаем, и к которому подключена куча лампочек, которые его постоянно разряжают. Понимаете аналогию? При выключении тока заряда лампочки очень быстро разрядят аккумулятор, просто этот процесс будет не мгновенный и все. Чтобы замедлить процесс разрядки надо повысить емкость аккумулятора, а в случае со стеной нужно увеличивать ее толщину.

Действительно аккумулируют тепло только внутренние стены и массивные предметы, находящиеся в помещении.

Резюме

При устройстве теплого дома нужно следить за тем, чтобы в помещении присутствовали достаточно тяжелые объекты, которые накапливали бы тепло. Это может быть стена, причем внутренняя стена накапливает тепло значительно интенсивнее, чем внешняя, ведь внутренняя стена имеет комнатную температуру по всей толщине! Это может быть монолитная колонна, или нечто не менее тяжелое. Напоминаю, что самым крутым аккумулятором тепла у наших предков, да кое-где и у нас служит кирпичная печь. Вспоминаю, как мы с друзьями топили русскую печь на даче, и она все не грелась, и не грелась, не смотря на то, что огонь просто бушевал в ней, и дров мы потратили огромное количество. Мы так и легли спать в холоде. Зато проснулись под утро от жары. Причем печь накопила столько тепла, что в этот уикенд мы ее больше и не топили. Мы уехали по домам, а она все еще была теплая. Так, если у вас в доме внутреннее утепление и легкие стены, например, из гипсокартона, то есть смысл не экономить на перегородках, и сделать их монолитными.

При устройстве внутренней теплоизоляции ни в коем случае нельзя прокладывать трубы отопления и, особенно водопровода между стеной и теплоизоляцией. Если в случае с отоплением вам грозит только увеличение сумм в счетах за горючее, то водопровод может и замерзнуть!

ВНИМАНИЕ!!! Личный опыт!

Один мой знакомый (сосед) купил деревянный дом. Причем в первую же зиму выяснилось, что рабочие сэкономили на пакле. Короче говоря, вообще ее не положили. Дело осложнялось еще тем, что брусья были пригнаны довольно плотно и нормально проконопатить дом не представлялось возможным. Я предложил соседу утеплить дом снаружи минеральной ватой. Так он и сделал. Кроме того, он устроил в своем доме и внутреннюю теплоизоляцию из пенопласта толщиной 3 см. Затем стены с внутренней стороны были покрыты гипсокартоном в один слой. В итоге, как ни странно, даже в самый сильный мороз в доме не закрывается форточка, а батареи отопления никогда не нагреваются выше 60 градусов. Справедливости ради хочу отметить, что окна использованы с двухкамерными стеклопакетами, а под форточкой имеется в виду маленькая щелка в откидной части окна. Отопление сделано с использованием циркуляционного насоса, что не мало важно!

Вот, пожалуйста! Перед вами случай, когда теория расходится с практикой. Получается, что один жалкий слой гипсокартона делает жилище очень даже комфортным. Я неоднократно предлагал соседу просверлить дырку в его гипсокартоне и сунуть в эту дырку градусник, чтобы проверить вышеизложенную теорию, но он, почему-то, отказывается.

Ну, конечно, теория с практикой расходиться не может. Если говорить серьезно, то можно придумать причины, почему в доме сухо и комфортно. Например, можно предположить, что в этом доме батареи отопления мощнее, чем надо. Может быть комнаты не слишком велики по объему воздуха, может быть хватает акумулированного тепла в потолке или внутренних стенах? В конце концов окна и форточки в мороз никто настеж не распахивал, и, самое интересное, что никто это делать и не собирается! Короче говоря, вот вам факты, а они, как известно - упрямые вещи!

В следующей статье я рассмотрю вопросы влажности воздуха в помещении.

Алтайский государственный технический университет

им. И. И. Ползунова

Заочный факультет

по дисциплине Нетрадиционные источники энергии.

тема: Аккумулирование тепла

Проверил: В.В. Чертищев

Барнаул 2007


Введение

Глава 1. Физические основы для создания теплового аккумулятора

Глава 2. Жидкостные тепловые аккумуляторы

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.

Глава 5. Конструкция ТА фазового перехода.


Введение

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Но возникает проблема сохранения полученной энергии. Например, тепловую энергию, полученную в солнечной водонагревательной установке, можно сохранить в тепловом аккумуляторе, и использовать в темное время суток.

Тепловые аккумуляторы известны человечеству с глубокой древности. Это и горячая зола, куда наши предки закапывали продукты для их тепловой обработки, и горячие камни, которые накаливали на огне. Утюг, который нагревают на огне, а затем гладят им,- тепловой аккумулятор. Накаленные камни, которые мы поливаем водой (квасом, пивом) в парилках,- тоже аккумулятор тепла. Термобигуди, которые кипятят в воде, а затем с их помощью делают прическу,- тоже тепловые аккумуляторы, причем достаточно совершенные, основанные на аккумулировании плавлением.

Итак, каждое тело, нагретое выше температуры окружающей среды, можно считать аккумулятором тепла. Это тело способно, охлаждаясь, производить работу, а, следовательно, обладает энергией.


Глава 1.Физические основы для создания теплового аккумулятора

Аккумулятором тепла называется устройство (или совокупность устройств), обеспечивающее обратимые процессы накопления, хранения и выработки тепловой энергии в соответствии с требованиями потребителя.

Процессы аккумулирования тепла происходят путем изменения физических параметров теплоаккумулирующего материала и за счет использования энергии связи атомов и молекул веществ.

Исходя из первого закона термодинамики для незамкнутой системы постоянного химического состава характеристики аккумуляторов тепла зависят от изменения массы, объема, давления, энтальпии и внутренней энергии материала, а также различных их комбинаций.

В зависимости от технической реализации используется прямее аккумулирование тепла, когда аккумулирующий материал является одновременно и теплоносителем, косвенное аккумулирование - при различных теплоаккумулирующих и теплопередающих средах, а также различные виды симбиоза названных случаев.

Изменение энтальпии теплоаккумулирующего материала (ТАМ) может происходить как с изменением его температуры, так и без такового - в процессе фазовых превращений (например, твердое - твердое, твердое - жидкое, жидкое - пар).

Тепловые аккумуляторы реализуют, как правило, несколько элементарных процессов.

На современном этапе развития науки и техники существует возможность реализации практически любого известного принципа аккумуляции тепла. Целесообразность использования каждого принципа определяется наличием положительного эффекта, в первую очередь, экономического, достижение которого возможно при минимальной стоимости аккумулятора. Она определяется при прочих равных условиях массой и объемом теплоаккумулирующего материала, необходимого для обеспечения заданных параметров процесса.

В реальном процессе аккумулирования тепла плотность запасаемой энергии оказывается существенно ниже теоретического значения вследствие потерь тепла, выравнивания поля температур, потерь при заряде и разряде. Отношение реального и теоретического значений плотности запасаемой энергии и определяет эффективность теплового аккумулятора.

Одним из важнейших показателей, определяющих возможность и целесообразность аккумулирования тепла, является способность выделять энергию в количествах, необходимых потребителю. При прямом аккумулировании тепла это достигается практически всегда. Показатели таких аккумуляторов слабо зависят от вырабатываемой мощности, которая определяется расходом ТАМ и ограничивается только конструктивными и прочностными требованиями.

При косвенном аккумулировании повышение вырабатываемой мощности увеличивает градиент температур и ТАМ, что приводит либо к увеличению поверхности теплообмена, либо к неполному использованию запаса тепла. В любом случае это снижает эффективность аккумулирования.

Глава 2. Жидкостные тепловые аккумуляторы

К числу наиболее простых и надежных устройств аккумулирования тепла, несомненно, относятся жидкостные ТА, что связано с совмещением функций теплоаккумулирующего материала теплоносителя. Вследствие этого аккумуляторы такого типа особенно широко применяются для бытовых целей, в схемах различных электростанций (АЭС, АТЭЦ, солнечные и др.). В настоящее время применяются несколько основных конструктивных исполнений жидкостных ТА. Двухкорпусной ТА характеризуется раздельным хранением горячего и холодного ТАМ. В процессе зарядки один корпус заполняется горячим ТАМ, а другой – опорожняется. При работе горячий ТАМ подается потребителю и, отработав, попадает в корпус холодного ТАМ. Основным достоинством такого исполнения ТА является изотермичность каждого из корпусов и, как следствие, отсутствие в них термических напряжений и потерь, энергии на нагрев - охлаждение. Очевидно также, что объем корпусов используется нерационально и почти вдвое превышает объем ТАМ. Такое принципиальное решение целесообразно при большой разнице температур горячего и

холодного ТАМ, особенно в случаях использования солевых ТАМ и жидких металлов.

Рис. 2. Основные типы жидкостных аккумуляторов тепла (магистрали показаны в режиме разряда): а - двухконтурный; б - многокорпусный; в - вытеснительный; с - со скользящей температурой ТАМ; 1 - горячий ТАМ; 2 - холодный ТАМ; 3– потребитель; 4 - единый корпус; 5 - уровень жидкости; 6 - промежуточный теплоноситель.

С целью более рационального использования объема аккумулятора предложен многокорпусный вариант, в котором используется несколько корпусов с горячим ТАМ и один пустой (холодный). По мере разрядки заполняется сначала этот корпус, а затем освобождающиеся горячие по мере их опорожнения. Это приводит к появлению термических напряжений и потерь на нагрев во всех корпусах, кроме одного.

Наиболее рационально используется объем теплового аккумулятора в случае применения единого корпуса, заполненного в начале процесса горячим ТАМ.

В процессе работы горячий ТАМ забирается из верхней части ТА, а отработанный холодный ТАМ подается в нижнюю часть ТА. Такой тип жидкостного аккумулятора называется вытеснительным. Вследствие разности плотностей горячей и холодной жидкостей может обеспечиваться малое перемешивание жидкости (эффект «термоклина»), эффективность использования вытеснительных ТА снижается вследствие потерь тепла на перемешивание и теплопроводности между объемами горячего и холодного ТАМ, нагрев корпусов и т. п.

Тепловые аккумуляторы такого типа применяются для жидкостей, имеющих большой коэффициент линейного расширения.

При особых свойствах ТАМ или нецелесообразности для потребителя использования ТАМ в качестве теплоносителя применяются тепловые аккумуляторы со скользящей температурой (рис. 2, г ).

В этом случае промежуточный теплообменник может размещаться как в корпусе ТА, так и вне его. В процессе заряда происходит нагрев ТА с использованием либо промежуточного теплоносителя, либо электроэнергии, а в процессе остывания производится отвод тепла в промежуточном теплообменнике. Одним из характерных примеров такого ТА является «солнечный пруд», в котором отбор ТАМ нежелателен вследствие разрушения обратного градиента солености воды.

Конструктивное исполнение жидкостного теплового аккумулятора во многом определяется свойствами теплоаккумулирующего материала. В настоящее время наиболее широко применяются вода и водные растворы солей, высокотемпературные органические и кремнийорганические теплоносители, расплавы солей и металлов.

В диапазоне рабочих температур 0...100 о С вода является лучшим жидким ТАМ как по комплексу теплофизических свойств, так и по экономическим показателям. Дальнейшее повышение рабочей температуры воды связано с существенным ростом давления, что усложняет проектирование корпуса, повышает его стоимость. С целью обеспечения низких рабочих давлений ТАМ используются различные высокотемпературные теплоносители. При этом возникают проблемы подбора конструкционных материалов теплового аккумулятора и системы в целом, применения специальных устройств, предотвращающих отвердение ТАМ на всех режимах эксплуатации, герметизации ТА и ряд других.

Кроме этого, использование наиболее распространенного вытеснительного типа ТА связано с комплексом конструктивных и эксплуатационных мероприятий, обеспечивающих минимальные потери энергии.


Top